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ESTABLISHING A SECURE CONNECTION

Alice Bob

?

How can we exchange data securely?
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ESTABLISHING A SECURE CONNECTION

Alice Bob

Shared Key

• Key exchange is a fundamental step for establishing a secure connection.

• Cryptographic key agreement schemes can be built from other methods:
- Diffie-Hellman;
- RSA;
- New post-quantum algorithms.
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POST-QUANTUM CRYPTOGRAPHY
Post-quantum cryptography overview:

Gustavo Banegas 15



POST-QUANTUM CRYPTOGRAPHY AND NIST CALL

• 2017: NIST launched call to post-quantum standards to replace RSA/ECC;

• 2022: NIST selects 1 key exchange mechanism and 3 signatures;
- Kyber as key exchange;
- Dilithium, Sphincs+, and Falcon as digital signatures;
- Further analysis: HQC, Bike and McEliece;

• 2023: NIST opened new call for signatures.
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WHAT IS A SECURE IMPLEMENTATION?

It does not leak:

• Time information;

• Power consumption;

• or any secret data.
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HOW DO WE ACHIEVE A SECURE IMPLEMENTATION?

• Constant-time implementation:
-
-

• -

• -
-
-
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HOW DO WE ACHIEVE A SECURE IMPLEMENTATION?

• Constant-time implementation:
- Constant-time property does not mean that time is deterministic;
- It is constant-time if the algorithm time provides no information about the input.

• Masking:
- Combine random values (masks) with the input;

• others more specific:
- Blinding;
- Shuffling;
- Random order execution, and etc.

Gustavo Banegas 21



SELECT YOUR THREAT MODEL

• Who are you against?

•

•
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SELECT YOUR THREAT MODEL

• Who are you against?

• Where the code will be use?

• What is your application?
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WHAT IS A SYSTEM-ON-CHIP?

It is easier to explain what a System-On-Chip
(SoC) contains:

• central processing unit (CPU);

•

•
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HOW IS A SOC AND CRYPTOGRAPHY IN PRACTICE?
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VALGRIND

If you code in C, Valgrind is your best friend.

• Dynamic analysis tools;

• Memory leak;

• Profiler tool;
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VALGRIND AND CONSTANT-TIME

• No branching on secret-dependent values;

• No secret-dependent values given to some
variable time functions;

• Avoid data-dependent instruction timing;

• Use constant-time arithmetic operations;

• No memory access based on
secret-dependent values;

• No secret-dependent values given to some
variable time functions;

• Use fixed-time lookup tables;

• Ensure no compiler optimizations
introduce timing variability.
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VALGRIND CONSTANT TIME VERIFICATION

• We “poison” the secret data, that is, we put an undefined value;

• valgrindwill check if the undefined data corrupts branches or indices.
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HOW TO USE valgrind TO CHECK SENSITIVE DATA

Correct flow without “poisoning”:
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HOW TO USE valgrind TO CHECK SENSITIVE DATA

We poison the secret data with “undefined” value
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HOW TO USE valgrind TO CHECK SENSITIVE DATA
We check where “undefined” value impacts in the code execution

we used valgrind to check if poisoning the secret data generates leaks of sensitive information
such as timing.
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HOW TO USE VALGRIND FOR CHECKING CONSTANT-TIME?

If you want to use it: https://github.com/gbanegas/class_ct
complete version in: https://neuromancer.sk/article/29

#include <memcheck.h>
/*

Use this function to mark any memory
regions containing secret data.

*/
#define poison(addr, len)

VALGRIND_MAKE_MEM_UNDEFINED(addr,
len)

int modulus = 65535;
int base = 123;
int exponent = 981357566;
// mark the exponent as secret
poison(&exponent, sizeof(int));
int res = modular_pow(base, exponent,

modulus);
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ELLIPTIC CURVES AND ISOGENIES

• An elliptic curve E over a finite field Fp is given by the equation:

y2 = x3 + ax + b

• An isogeny ϕ : E → E′ is a non-constant rational map that preserves the group structure.

• For supersingular elliptic curves, the endomorphism ring is isomorphic to a maximal order
in a quaternion algebra.
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CSIDH

CSIDH is a post-quantum isogeny-based non-interactive key exchange protocol.

It uses a group action on a certain set of elliptic curves.
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CSIDH

CSIDH is a post-quantum isogeny-based non-interactive key exchange protocol.

It uses a group action on a certain set of elliptic curves.

• Secret keys sampled from some keyspace sk ∈ K give group elements,

• Public keys are elliptic curves obtained by evaluating the group action ⋆

pk = sk ⋆ E
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CSIDH

Start with a prime p = 4ℓ1 · ℓn – 1 with ℓi small primes.
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CSIDH
Start with a prime p = 4ℓ1 · ℓn – 1 with ℓi small primes.
There is a abelian group G acting on a set of elliptic curves E = {E/Fp : #E(Fp) = p + 1},
represented in Montgomery form

EA : y2 = x3 + Ax2 + x for some A ∈ F∗
p \ {±2}

For every ℓi | p + 1, we have a group element gi ∈ Gwith efficient action via isogenies:

EA′ = gi ⋆ EA. ←→ ϕ : EA → EA′ ℓi-isogeny.

Secret keys (e1, . . . , en) ∈ Zn; public keys

EA′ =
( n

∏
i=1
geii

)
⋆ EA.
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STEP-BY-STEP PROCEDURE

• Identify the curve: Start with a supersingular elliptic curve E over Fp.

• Select a point: Choose a point P of order 3 on E.

• Compute the kernel polynomial: The kernel polynomial KP(x) is computed using the
x-coordinates of P.

• Evaluate the isogeny: Construct the isogeny ϕ : E → E′ with kernel generated by P.

• Iterate using the secret exponent: Apply the isogeny e3 times to compute the final curve.

Gustavo Banegas 76



CSIDH - COMPUTATION

Step 1: Identify the Curve

•

•

•
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CSIDH - COMPUTATION

Step 1: Identify the Curve

• Given a supersingular elliptic curve E defined over Fp

• Example: E : y2 = x3 + Ax + Bwith specific A and B

Step 2: Select a Point

• Choose a point P on E of order 3

• Ensure P is not the point at infinity

• Example: P = (x1, y1)
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CSIDH - COMPUTATION

Step 3: Compute the Kernel Polynomial

•

•

•

•

•
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CSIDH - COMPUTATION
Step 3: Compute the Kernel Polynomial

• Kernel polynomial KP(x) is given by (x – x(P))

• For a point P = (x1, y1), KP(x) = x – x1

Step 4: Evaluate the Isogeny

• Construct the isogeny ϕ with kernel 〈P〉

• Use Vélu’s formulas to compute the new curve coefficients

• Vélu’s formulas for ϕ:
ϕ(x) = x – ∑

R∈〈P〉\{O}

(
x – x(R)

x – x(P + R)

)

ϕ(y) = y ∏
R∈〈P〉\{O}

(
x – x(R)

x – x(P + R)

)1/2
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Step 5: Iterate using the Secret Exponent

•

•

•
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Step 5: Iterate using the Secret Exponent

• Let e be the secret exponent;

• Apply the degree-3 isogeny ϕ to E repeatedly e times;

• After e applications, compute the final curve E′.
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CONSTANT-TIME EVALUATION

Constant-time evaluation of the group action If the input is a CSIDH curve and a private key,
and the output is the result of the CSIDH action, then the algorithm time provides no
information about the private key, and provides no information about the output.
Secret keys (e1, . . . , en) ∈ Zn; public keys

EA′ =
( n

∏
i=1
geii

)
⋆ EA.
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BATCHING

The batching idea
CSIDH-512 prime p = 4 · (3 · 5 · · · · · 373 · 587) – 1.
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BATCHING

The batching idea
CSIDH-512 prime p = 4 · (3 · 5 · · · · · 373 · 587) – 1.
We start with the exponent vector (e1, . . . , en) ∈ Zn.
Now we split the primes into batches:

primes { 3 5 7 } { 11 13 17 19 } { 23 29 31 } . . .

exponent vector 1 -2 0 3 -1 1 0 2 -1 0 . . .
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BATCHING
The batching idea
CSIDH-512 prime p = 4 · (3 · 5 · · · · · 373 · 587) – 1.
We start with the exponent vector (e1, . . . , en) ∈ Zn.
Now we group the entries in the exponent vector isogenies per batch:

primes { 3 5 7 } { 11 13 17 19 } { 23 29 31 } . . .

exponent vector 1 -2 0 3 -1 1 0 2 -1 0 . . .
per batch 3 5 3

exponent vector (e1, . . . , en) ∈ Zn comes from the subset in which we compute
• 3 {3, 5, 7}-isogenies,
• 5 {11, 13, 17, 19}-isogenies,
• and 3 {23, 29, 31}-isogenies.
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BATCHING
The batching idea
CSIDH-512 prime p = 4 · (3 · 5 · · · · · 373 · 587) – 1.
We start with the exponent vector (e1, . . . , en) ∈ Zn.
Now we group the entries in the exponent vector isogenies per batch:

primes { 3 5 7 } { 11 13 17 19 } { 23 29 31 } . . .

exponent vector 1 -2 0 3 -1 1 0 2 -1 0 . . .
per batch 3 5 3

exponent vector (e1, . . . , en) ∈ Zn comes from the subset in which we compute
• up to 3 {3, 5, 7}-isogenies,
• up to 5 {11, 13, 17, 19}-isogenies,
• and up to 3 {23, 29, 31}-isogenies.
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BATCHING

The batching idea
CSIDH-512 prime p = 4 · (3 · 5 · · · · · 373 · 587) – 1.
Now we group the isogenies per batch:

primes { 3 5 7 } { 11 13 17 19 } { 23 29 31 } . . .

exponent vector 1 -2 0 3 -1 1 0 2 -1 0 . . .
per batch 3 5 3

Batching Keyspace For B batches: For N ∈ ZB>0 andm ∈ ZB≥0, we define

KN,m :=
{

(e1, . . . , en) ∈ Zn |
∑Ni

j=1 |ei, j| ≤ mi for 1 ≤ i ≤ B
}

.
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ISOGENY MAGIC

In CSIDH, start with prime p = 4ℓ1 . . . ℓn – 1 for ℓi small odd primes. Group action For every
ℓi | p + 1, we have an element gi that we can act with using ℓi-isogenies:

EA′ = gi ⋆ EA

Group action via isogenies
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ISOGENY MAGIC
In CSIDH, start with prime p = 4ℓ1 . . . ℓn – 1 for ℓi small odd primes. Group action For every
ℓi | p + 1, we have an element gi that we can act with using ℓi-isogenies:

EA′ = gi ⋆ EA

Group action via isogenies
Replace the group element gi with an ℓi-isogeny ϕ:

ϕ : EA → EA′

Isogenies are algebraic group homomorphisms of elliptic curves

ϕ : y2 = x3 + Ax2 + x −→ y2 = x3 + A′x2 + x

(x, y) 7→ (f (x, y), g(x, y)) f , g rational functions over FpGustavo Banegas 104



ISOGENY MAGIC
In CSIDH, start with prime p = 4ℓ1 . . . ℓn – 1 for ℓi small odd primes. Group action For every
ℓi | p + 1, we have an element gi that we can act with using ℓi-isogenies:

EA′ = gi ⋆ EA

Group action via isogenies
Replace the group element gi with an ℓi-isogeny ϕ:

ϕ : EA → EA′

Isogenies are algebraic group homomorphisms of elliptic curves:

P ∈ EA 7→ ϕ(P) ∈ EA′

order ℓiN −→ order N.Gustavo Banegas 105



COMPUTING THE GROUP ACTION

Computing the action by gi ↔ ℓi Simplified algorithm to compute the group action EA′ = gi ⋆ EA:

1 find a point P of order ℓi on EA:
1 generate a point T of order p + 1 on EA,

2 multiply P = [p+1
ℓi

]T.

2 Compute the ℓi-isogeny ϕ : EA → EA′ with kernel P:
1 enumerate the multiples [i]P of the point P for i ∈ S,

with S = {1, 2, . . . , ℓ–1
2 } [?] or S = {1, 3, 5, . . . , ℓ – 2} [?],

2 construct a polynomial h(X) = ∏i∈S(x – x([i]P)),

3 Compute the coefficient A′ from h(X).
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COMPUTING THE GROUP ACTION

Computing the action by gi ↔ ℓi Simplified algorithm to compute the group action EA′ = gi ⋆ EA:

1 find a point P of order ℓi on EA:
1 generate a point T of order p + 1 on EA,

2 multiply P = [p+1
ℓi

]T. Costs ≈ 10 log2(p) mult in Fp.

2 Compute the ℓi-isogeny ϕ : EA → EA′ with kernel P: Cost ≤ 6ℓi mult in Fp

1 enumerate the multiples [i]P of the point P for i ∈ S,

with S = {1, 2, . . . , ℓ–1
2 } [?] or S = {1, 3, 5, . . . , ℓ – 2} [?],

2 construct a polynomial h(X) = ∏i∈S(x – x([i]P)),

3 Compute the coefficient A′ from h(X).
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AMORTIZE THE COST
Exponent vector (1, 1, 1, 0, . . . , 0)
We compute ℓi-isogenies for ℓ1 = 3 and ℓ2 = 5 and ℓ3 = 7:

1 Find a suitable point:
1 Generate a random point T of order p + 1,
2 Compute T1 =

[
p+1

3·5·7

]
T has exact order 3 · 5 · 7,

2 Compute the isogenies:
1 3-isogeny:

1 Compute P1 = [5 · 7]T1 has order 3,
2 Use P1 to construct 3-isogeny ϕ1,
3 Point T2 = ϕ1(T1) has order 5 · 7 on the new curve,

2 5-isogeny:
1 Compute P2 = [7]T2 has order 5,
2 Construct 5-isogeny ϕ2 with kernel P2,
3 The point T3 = ϕ2(T2) has order 7 on the new curve,

3 7-isogeny: construct the isogeny ϕ3 with kernel P3 = T3.
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TOWARDS ATOMIC BLOCKS
Exponent vector (1, 0, 1, 0, . . . , 0) We compute ℓi-isogenies for ℓ1 = 3 and ℓ3 = 7 but no 5-isogeny:

1 Find a suitable point:
1 Generate a random point T of order p + 1,
2 Compute T1 =

[
p+1

3·5·7

]
T has exact order 3 · 5 · 7,

2 Compute the isogenies:
1 3-isogeny:

1 Compute P1 = [5 · 7]T1 has order 3,
2 Use P1 to construct 3-isogeny ϕ1,
3 Point T2 = ϕ1(T1) has order 5 · 7 on the new curve,

2 No 5-isogeny:
1 Compute the isogeny as before but throw away the results,
2 Adjust to code to always compute [5]T2,
3 The point T3 = [5]T2 has order 7 on the same curve,

3 7-isogeny: construct the isogeny ϕ3 with kernel P3 = T3.
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ATOMIC BLOCKS
Definition (Atomic Blocks, simplified)
Let I = (I1, . . . , Ik) ∈ Zk be such that 1 ≤ I1 < I2 < · · · < Ik ≤ n.
An atomic block of length k is a probabilistic algorithm I taking inputs A and ϵ ∈ {0, 1}k and
returning A′ ∈ Fp such that EA′ = (∏i g

ϵi
Ii ) ⋆ EA, satisfying

there is a function τ such that, for each (A, ϵ) the distribution of the time taken by I, given
that A′ is returned by I on input (A, ϵ), is τ(I).

Evaluating 3, 5, and 7-isogeny
On the previous slide, we saw an atomic block I with I = (1, 2, 3) that computes

EA′ = gϵ1
1 gϵ2

2 gϵ3
3 ⋆ EA

for (ϵ1, ϵ2, ϵ3) ∈ {0, 1}3 without leaking timing information about (ϵ1, ϵ2, ϵ3).
Gustavo Banegas 113



ATOMIC BLOCKS
Definition (Atomic Blocks, simplified)
Let I = (I1, . . . , Ik) ∈ Zk be such that 1 ≤ I1 < I2 < · · · < Ik ≤ n.
An atomic block of length k is a probabilistic algorithm I taking inputs A and ϵ ∈ {0, 1}k and
returning A′ ∈ Fp such that EA′ = (∏i g

ϵi
Ii ) ⋆ EA, satisfying

there is a function τ such that, for each (A, ϵ) the distribution of the time taken by I, given
that A′ is returned by I on input (A, ϵ), is τ(I).

Evaluating 3, 5, and 7-isogeny
On the previous slide, we saw an atomic block I with I = (1, 2, 3) that computes

EA′ = gϵ1
1 gϵ2

2 gϵ3
3 ⋆ EA

for (ϵ1, ϵ2, ϵ3) ∈ {0, 1}3 without leaking timing information about (ϵ1, ϵ2, ϵ3).
Gustavo Banegas 114



ATOMIC BLOCKS FOR BATCHES
Atomic blocks for batches
Suppose we have batches {3, 5, 7}, {11, 13, 17}, . . . And we want to compute one 5-isogeny and
one 11-isogeny, i.e. exponent vector (0, 1, 0, 1, 0, 0, 0, . . . )

1 Find a suitable point:
1 Generate a random point T of order p + 1,
2 Compute T1 =

[
p+1

(3·5·7)(11·13·17)

]
T has order (3 · 5 · 7)(11 · 13 · 17).

2 Compute the isogenies:
1 {3, 5, 7}-isogeny:

1 Compute P1 = [(11 · 13 · 17)]T1 has order (3 · 5 · 7),
2 Use [3 · 7]P1 of order 5 to construct 5 -isogeny ϕ1,
3 Point T2 = [3 · 7]ϕ1(T1) has order 11 · 13 · 17 on the new curve,

2 {11, 13, 17}-isogeny:
1 Compute P2 = [13 · 17]T2 has order 11,
2 Construct 11-isogeny ϕ2 with kernel P2.Gustavo Banegas 115
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MATRYOSKHA ISOGENY

How to construct the isogeny with the same code for all primes in the batch:
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MATRYOSKHA ISOGENY

How to construct the isogeny with the same code for all primes in the batch:
Matryoshka Isogeny for the batch {11, 13, 17}
Compute the 11-isogeny

1 enumerate the multiples [i]P of the point P for i ∈ S,

with S = {1, 2, . . . , 5}

2 construct h(X) = ∏
5
i=1(x – x([i]P)),

3 Compute the coefficient A′ from h(X).
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MATRYOSKHA ISOGENY

How to construct the isogeny with the same code for all primes in the batch:
Matryoshka Isogeny for the batch {11, 13, 17}
Compute the��11 13-isogeny

1 enumerate the multiples [i]P of the point P for i ∈ S,

with S = {1, 2, . . . , 5, 6}

2 construct h(X) = ∏
5
i=1(x – x([i]P)) · (x – x([6]P)),

3 Compute the coefficient A′ from h(X).
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MATRYOSKHA ISOGENY

How to construct the isogeny with the same code for all primes in the batch:
Matryoshka Isogeny for the batch {11, 13, 17}
Compute the��11��13 17-isogeny

1 enumerate the multiples [i]P of the point P for i ∈ S,

with S = {1, 2, . . . , 5, 6, 7, 8}

2 construct h(X) = ∏
5
i=1(x – x([i]P)) · (x – x([6]P)) · (x – x([7]P))(x – x([8]P)),

3 Compute the coefficient A′ from h(X).
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QUICK RECAP

• We need to evaluate where the code will ran;

• We should use tools to verify our constant-time implementation;

• We might need to adapt a scheme to adequate constant-time;

• We have other ways of secure implement an implementation.
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OPEN PROBLEMS

• Isogenies are a candidate on NIST (SQISign);

• Falcon needs a secure implementation (Floating point arithmetic);

• Improvements on the hardware implementation of Lattice schemes;

• Secure implementations of code-base schemes (HQC, McEliece, Bike).
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QUESTIONS

Thank you to listen.
Questions?

gustavo@crytpme.in
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Is This Constant Time?
A CHES drinking game



Game

• We’ll show C/C++ code snippets along with compiler (including 
version), compilation flags and targets

• Guess if the code is constant time or not

• Don’t use Godbolt.org or you’ll kill the fun ☺

• If the majority of the room gets it right, we drink
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modular arithmetic

ARMv7-a Clang 16.0, –Ofast -mtune=cortex-m3

Compact Dilithium implementations 
on Cortex-M3 and Cortex M-4
Greconici et Al.



HQC reference code

X86-64 Clang-16.0, -Ofast

NOT CLAIMED TO BE CONSTANT-TIME



HQC reference code

X86-64 Clang-16.0, -Ofast

NOT CLAIMED TO BE CONSTANT-TIME



HQC reference code

X86-64 Clang-16.0, -Ofast

NOT CLAIMED TO BE CONSTANT-TIME



HQC reference code

X86-64 GCC 13.2, -Ofast

NOT CLAIMED TO BE CONSTANT-TIME



HQC reference code

X86-64 GCC 13.2, -Ofast

NOT CLAIMED TO BE CONSTANT-TIME



HQC reference code

X86-64 GCC 13.2, -Ofast

NOT CLAIMED TO BE CONSTANT-TIME



RISC-V arrays comparison

rv32gc Clang 15.0, -Ofast



RISC-V arrays comparison

rv32gc Clang 15.0, -Ofast



RISC-V arrays comparison

rv32gc Clang 15.0, -Ofast



RISC-V Comparisons

C, rv32gc Clang 15.0, -Ofast



RISC-V Comparisons

C, rv32gc Clang 15.0, -Ofast



RISC-V Comparisons

C, rv32gc Clang 15.0, -Ofast



RISC-V Comparisons

C, rv32gc Clang 15.0, -Ofast



RISC-V Comparisons

C, rv32gc Clang 15.0, -Ofast



RISC-V Comparisons

C, rv32gc Clang 15.0, -Ofast



RISC-V Comparisons

C, rv32gc Clang 16.0, -Ofast



RISC-V Comparisons

C, rv32gc Clang 16.0, -Ofast



RISC-V Comparisons

C, rv32gc Clang 16.0, -Ofast


