
Secure implementations
of post-quantum schemes

Gustavo Banegas

June 3, 2024

Summer School on real-world crypto and privacy

Gustavo Banegas 2

TABLE OF CONTENTS

1 Introduction

2 Tools for constant-time

3 Real world constant-time: isogenies

Gustavo Banegas 3

TABLE OF CONTENTS

1 Introduction

2 Tools for constant-time

3 Real world constant-time: isogenies

Gustavo Banegas 4

ESTABLISHING A SECURE CONNECTION

Alice Bob

?

How can we exchange data securely?

Gustavo Banegas 5

ESTABLISHING A SECURE CONNECTION

Alice Bob

Public key A

Gustavo Banegas 6

ESTABLISHING A SECURE CONNECTION

Alice Bob

Public key B

Gustavo Banegas 7

ESTABLISHING A SECURE CONNECTION

Alice Bob

Shared Key

• Key exchange is a fundamental step for establishing a secure connection.

• Cryptographic key agreement schemes can be built from other methods:
- Diffie-Hellman;
- RSA;
- New post-quantum algorithms.

Gustavo Banegas 8

THREATS TO CRYPTOGRAPHY

•

•

•

Alice Bob

Shared Key

Gustavo Banegas 9

THREATS TO CRYPTOGRAPHY

• Cryptanalysis:
- Exploit mathematical and algorithmic

weaknesses.

•

•
Alice Bob

Cryptanalysis

Gustavo Banegas 10

THREATS TO CRYPTOGRAPHY

• Cryptanalysis:
- Exploit mathematical and algorithmic

weaknesses.

• Quantum Attacks:
- Exploit vulnerabilities to quantum

computation.

•

Alice Bob

Cryptanalysis

Quantum attacks

Gustavo Banegas 11

THREATS TO CRYPTOGRAPHY

• Cryptanalysis:
- Exploit mathematical and algorithmic

weaknesses.

• Quantum Attacks:
- Exploit vulnerabilities to quantum

computation.

• Side-Channel Attacks:
- Exploit runtime information:

+ timing (local and remote);
+ power consumption;
+ electromagnetic radiation.

Alice Bob

Cryptanalysis

Quantum attacks

Side-channel attacks

Gustavo Banegas 12

THREATS TO CRYPTOGRAPHY

• Cryptanalysis:
- Exploit mathematical and algorithmic

weaknesses.

• Quantum Attacks:
- Exploit vulnerabilities to quantum

computation.

• Side-Channel Attacks:
- Exploit runtime information:

+ timing (local and remote);
+ power consumption;
+ electromagnetic radiation.

Alice Bob

Cryptanalysis

Quantum attacks

Side-channel attacks

Gustavo Banegas 13

THREATS TO CRYPTOGRAPHY

• Cryptanalysis:
- Exploit mathematical and algorithmic

weaknesses.

• Quantum Attacks:
- Exploit vulnerabilities to quantum

computation.

• Side-Channel Attacks:
- Exploit runtime information:

+ timing (local and remote);
+ power consumption;
+ electromagnetic radiation.

Alice Bob

Cryptanalysis

Quantum attacks

Side-channel attacks

Gustavo Banegas 14

POST-QUANTUM CRYPTOGRAPHY
Post-quantum cryptography overview:

Gustavo Banegas 15

POST-QUANTUM CRYPTOGRAPHY AND NIST CALL

• 2017: NIST launched call to post-quantum standards to replace RSA/ECC;

• 2022: NIST selects 1 key exchange mechanism and 3 signatures;
- Kyber as key exchange;
- Dilithium, Sphincs+, and Falcon as digital signatures;
- Further analysis: HQC, Bike and McEliece;

• 2023: NIST opened new call for signatures.

Gustavo Banegas 16

WHAT IS A SECURE IMPLEMENTATION?

It does not leak:

• Time information;

• Power consumption;

• or any secret data.

Gustavo Banegas 17

HOW DO WE ACHIEVE A SECURE IMPLEMENTATION?

• Constant-time implementation:
-
-

• -

• -
-
-

Gustavo Banegas 18

HOW DO WE ACHIEVE A SECURE IMPLEMENTATION?

• Constant-time implementation:
- Constant-time property does not mean that time is deterministic;
- It is constant-time if the algorithm time provides no information about the input.

• -

• -
-
-

Gustavo Banegas 19

HOW DO WE ACHIEVE A SECURE IMPLEMENTATION?

• Constant-time implementation:
- Constant-time property does not mean that time is deterministic;
- It is constant-time if the algorithm time provides no information about the input.

• Masking:
- Combine random values (masks) with the input;

• -
-
-

Gustavo Banegas 20

HOW DO WE ACHIEVE A SECURE IMPLEMENTATION?

• Constant-time implementation:
- Constant-time property does not mean that time is deterministic;
- It is constant-time if the algorithm time provides no information about the input.

• Masking:
- Combine random values (masks) with the input;

• others more specific:
- Blinding;
- Shuffling;
- Random order execution, and etc.

Gustavo Banegas 21

SELECT YOUR THREAT MODEL

• Who are you against?

•

•

Gustavo Banegas 22

SELECT YOUR THREAT MODEL

• Who are you against?

•

•

Gustavo Banegas 23

SELECT YOUR THREAT MODEL

• Who are you against?

• Where the code will be use?

•

Gustavo Banegas 24

SELECT YOUR THREAT MODEL

• Who are you against?

• Where the code will be use?

•

Gustavo Banegas 25

SELECT YOUR THREAT MODEL

• Who are you against?

• Where the code will be use?

•

Gustavo Banegas 26

SELECT YOUR THREAT MODEL

• Who are you against?

• Where the code will be use?

• What is your application?

Gustavo Banegas 27

WHAT IS A SYSTEM-ON-CHIP?

It is easier to explain what a System-On-Chip
(SoC) contains:

• central processing unit (CPU);

•

•

•

•

•

Gustavo Banegas 28

WHAT IS A SYSTEM-ON-CHIP?

It is easier to explain what a System-On-Chip
(SoC) contains:

• central processing unit (CPU);

• memory interfaces;

•

•

•

•

Gustavo Banegas 29

WHAT IS A SYSTEM-ON-CHIP?

It is easier to explain what a System-On-Chip
(SoC) contains:

• central processing unit (CPU);

• memory interfaces;

• input/output devices and interfaces;

•

•

•

Gustavo Banegas 30

WHAT IS A SYSTEM-ON-CHIP?

It is easier to explain what a System-On-Chip
(SoC) contains:

• central processing unit (CPU);

• memory interfaces;

• input/output devices and interfaces;

• secondary storage interfaces;

•

•

Gustavo Banegas 31

WHAT IS A SYSTEM-ON-CHIP?

It is easier to explain what a System-On-Chip
(SoC) contains:

• central processing unit (CPU);

• memory interfaces;

• input/output devices and interfaces;

• secondary storage interfaces;

• graphics processing unit (GPU);

•

Gustavo Banegas 32

WHAT IS A SYSTEM-ON-CHIP?

It is easier to explain what a System-On-Chip
(SoC) contains:

• central processing unit (CPU);

• memory interfaces;

• input/output devices and interfaces;

• secondary storage interfaces;

• graphics processing unit (GPU);

• Other components.

Gustavo Banegas 33

WHAT IS A SYSTEM-ON-CHIP?

It is easier to explain what a System-On-Chip
(SoC) contains:

• central processing unit (CPU);

• memory interfaces;

• input/output devices and interfaces;

• secondary storage interfaces;

• graphics processing unit (GPU);

• Other components.

Gustavo Banegas 34

HOW IS A SOC AND CRYPTOGRAPHY IN PRACTICE?

Gustavo Banegas 35

HOW IS A SOC AND CRYPTOGRAPHY IN PRACTICE?

Gustavo Banegas 36

HOW IS A SOC AND CRYPTOGRAPHY IN PRACTICE?

Gustavo Banegas 37

HOW IS A SOC AND CRYPTOGRAPHY IN PRACTICE?

Gustavo Banegas 38

HOW IS A SOC AND CRYPTOGRAPHY IN PRACTICE?

Gustavo Banegas 39

HOW IS A SOC AND CRYPTOGRAPHY IN PRACTICE?

Gustavo Banegas 40

HOW IS A SOC AND CRYPTOGRAPHY IN PRACTICE?

Gustavo Banegas 41

HOW IS A SOC AND CRYPTOGRAPHY IN PRACTICE?

Gustavo Banegas 42

HOW IS A SOC AND CRYPTOGRAPHY IN PRACTICE?

Gustavo Banegas 43

HOW IS A SOC AND CRYPTOGRAPHY IN PRACTICE?

Gustavo Banegas 44

HOW IS A SOC AND CRYPTOGRAPHY IN PRACTICE?

Gustavo Banegas 45

TABLE OF CONTENTS

1 Introduction

2 Tools for constant-time

3 Real world constant-time: isogenies

Gustavo Banegas 46

VALGRIND

If you code in C, Valgrind is your best friend.

• Dynamic analysis tools;

• Memory leak;

• Profiler tool;

Gustavo Banegas 47

VALGRIND AND CONSTANT-TIME

• No branching on secret-dependent values;

•

•

•

•

•

•

•

Gustavo Banegas 48

VALGRIND AND CONSTANT-TIME

• No branching on secret-dependent values;

•

•

•

• No memory access based on
secret-dependent values;

•

•

•

Gustavo Banegas 49

VALGRIND AND CONSTANT-TIME

• No branching on secret-dependent values;

• No secret-dependent values given to some
variable time functions;

•

•

• No memory access based on
secret-dependent values;

•

•

•

Gustavo Banegas 50

VALGRIND AND CONSTANT-TIME

• No branching on secret-dependent values;

• No secret-dependent values given to some
variable time functions;

•

•

• No memory access based on
secret-dependent values;

• No secret-dependent values given to some
variable time functions;

•

•

Gustavo Banegas 51

VALGRIND AND CONSTANT-TIME

• No branching on secret-dependent values;

• No secret-dependent values given to some
variable time functions;

• Avoid data-dependent instruction timing;

•

• No memory access based on
secret-dependent values;

• No secret-dependent values given to some
variable time functions;

•

•

Gustavo Banegas 52

VALGRIND AND CONSTANT-TIME

• No branching on secret-dependent values;

• No secret-dependent values given to some
variable time functions;

• Avoid data-dependent instruction timing;

•

• No memory access based on
secret-dependent values;

• No secret-dependent values given to some
variable time functions;

• Use fixed-time lookup tables;

•

Gustavo Banegas 53

VALGRIND AND CONSTANT-TIME

• No branching on secret-dependent values;

• No secret-dependent values given to some
variable time functions;

• Avoid data-dependent instruction timing;

• Use constant-time arithmetic operations;

• No memory access based on
secret-dependent values;

• No secret-dependent values given to some
variable time functions;

• Use fixed-time lookup tables;

•

Gustavo Banegas 54

VALGRIND AND CONSTANT-TIME

• No branching on secret-dependent values;

• No secret-dependent values given to some
variable time functions;

• Avoid data-dependent instruction timing;

• Use constant-time arithmetic operations;

• No memory access based on
secret-dependent values;

• No secret-dependent values given to some
variable time functions;

• Use fixed-time lookup tables;

• Ensure no compiler optimizations
introduce timing variability.

Gustavo Banegas 55

VALGRIND CONSTANT TIME VERIFICATION

• We “poison” the secret data, that is, we put an undefined value;

• valgrindwill check if the undefined data corrupts branches or indices.

Gustavo Banegas 56

HOW TO USE valgrind TO CHECK SENSITIVE DATA

Correct flow without “poisoning”:

Gustavo Banegas 57

HOW TO USE valgrind TO CHECK SENSITIVE DATA

We poison the secret data with “undefined” value

Gustavo Banegas 58

HOW TO USE valgrind TO CHECK SENSITIVE DATA
We check where “undefined” value impacts in the code execution

we used valgrind to check if poisoning the secret data generates leaks of sensitive information
such as timing.

Gustavo Banegas 59

HOW TO USE VALGRIND FOR CHECKING CONSTANT-TIME?

If you want to use it: https://github.com/gbanegas/class_ct
complete version in: https://neuromancer.sk/article/29

#include <memcheck.h>
/*

Use this function to mark any memory
regions containing secret data.

*/
#define poison(addr, len)

VALGRIND_MAKE_MEM_UNDEFINED(addr,
len)

int modulus = 65535;
int base = 123;
int exponent = 981357566;
// mark the exponent as secret
poison(&exponent, sizeof(int));
int res = modular_pow(base, exponent,

modulus);

Gustavo Banegas 60

https://github.com/gbanegas/class_ct
https://neuromancer.sk/article/29

HOW TO USE VALGRIND FOR CHECKING CONSTANT-TIME?

If you want to use it: https://github.com/gbanegas/class_ct
complete version in: https://neuromancer.sk/article/29

#include <memcheck.h>
/*

Use this function to mark any memory
regions containing secret data.

*/
#define poison(addr, len)

VALGRIND_MAKE_MEM_UNDEFINED(addr,
len)

int modulus = 65535;
int base = 123;
int exponent = 981357566;
// mark the exponent as secret
poison(&exponent, sizeof(int));
int res = modular_pow(base, exponent,

modulus);

Gustavo Banegas 61

https://github.com/gbanegas/class_ct
https://neuromancer.sk/article/29

HOW TO USE VALGRIND FOR CHECKING CONSTANT-TIME?

If you want to use it: https://github.com/gbanegas/class_ct
complete version in: https://neuromancer.sk/article/29

#include <memcheck.h>
/*

Use this function to mark any memory
regions containing secret data.

*/
#define poison(addr, len)

VALGRIND_MAKE_MEM_UNDEFINED(addr,
len)

int modulus = 65535;
int base = 123;
int exponent = 981357566;
// mark the exponent as secret
poison(&exponent, sizeof(int));
int res = modular_pow(base, exponent,

modulus);

Gustavo Banegas 62

https://github.com/gbanegas/class_ct
https://neuromancer.sk/article/29

HOW TO USE VALGRIND FOR CHECKING CONSTANT-TIME?

Gustavo Banegas 63

HOW TO USE VALGRIND FOR CHECKING CONSTANT-TIME?

Gustavo Banegas 64

HOW TO USE VALGRIND FOR CHECKING CONSTANT-TIME?

Gustavo Banegas 65

HOW TO USE VALGRIND FOR CHECKING CONSTANT-TIME?

Gustavo Banegas 66

HOW TO USE VALGRIND FOR CHECKING CONSTANT-TIME?

Gustavo Banegas 67

TABLE OF CONTENTS

1 Introduction

2 Tools for constant-time

3 Real world constant-time: isogenies

Gustavo Banegas 68

ELLIPTIC CURVES AND ISOGENIES

• An elliptic curve E over a finite field Fp is given by the equation:

y2 = x3 + ax + b

• An isogeny ϕ : E → E′ is a non-constant rational map that preserves the group structure.

• For supersingular elliptic curves, the endomorphism ring is isomorphic to a maximal order
in a quaternion algebra.

Gustavo Banegas 69

CSIDH

CSIDH is a post-quantum isogeny-based non-interactive key exchange protocol.

It uses a group action on a certain set of elliptic curves.

Gustavo Banegas 70

CSIDH

CSIDH is a post-quantum isogeny-based non-interactive key exchange protocol.

It uses a group action on a certain set of elliptic curves.

• Secret keys sampled from some keyspace sk ∈ K give group elements,

• Public keys are elliptic curves obtained by evaluating the group action ⋆

pk = sk ⋆ E

Gustavo Banegas 71

CSIDH

Start with a prime p = 4ℓ1 · ℓn – 1 with ℓi small primes.

Gustavo Banegas 72

CSIDH

Start with a prime p = 4ℓ1 · ℓn – 1 with ℓi small primes.
There is a abelian group G acting on a set of elliptic curves E = {E/Fp : #E(Fp) = p + 1},
represented in Montgomery form

EA : y2 = x3 + Ax2 + x for some A ∈ F∗
p \ {±2}

Gustavo Banegas 73

CSIDH

Start with a prime p = 4ℓ1 · ℓn – 1 with ℓi small primes.
There is a abelian group G acting on a set of elliptic curves E = {E/Fp : #E(Fp) = p + 1},
represented in Montgomery form

EA : y2 = x3 + Ax2 + x for some A ∈ F∗
p \ {±2}

For every ℓi | p + 1, we have a group element gi ∈ Gwith efficient action via isogenies:

EA′ = gi ⋆ EA. ←→ ϕ : EA → EA′ ℓi-isogeny.

Gustavo Banegas 74

CSIDH
Start with a prime p = 4ℓ1 · ℓn – 1 with ℓi small primes.
There is a abelian group G acting on a set of elliptic curves E = {E/Fp : #E(Fp) = p + 1},
represented in Montgomery form

EA : y2 = x3 + Ax2 + x for some A ∈ F∗
p \ {±2}

For every ℓi | p + 1, we have a group element gi ∈ Gwith efficient action via isogenies:

EA′ = gi ⋆ EA. ←→ ϕ : EA → EA′ ℓi-isogeny.

Secret keys (e1, . . . , en) ∈ Zn; public keys

EA′ =
(n

∏
i=1
geii

)
⋆ EA.

Gustavo Banegas 75

STEP-BY-STEP PROCEDURE

• Identify the curve: Start with a supersingular elliptic curve E over Fp.

• Select a point: Choose a point P of order 3 on E.

• Compute the kernel polynomial: The kernel polynomial KP(x) is computed using the
x-coordinates of P.

• Evaluate the isogeny: Construct the isogeny ϕ : E → E′ with kernel generated by P.

• Iterate using the secret exponent: Apply the isogeny e3 times to compute the final curve.

Gustavo Banegas 76

CSIDH - COMPUTATION

Step 1: Identify the Curve

•

•

•

Gustavo Banegas 77

CSIDH - COMPUTATION

Step 1: Identify the Curve

• Given a supersingular elliptic curve E defined over Fp

•

•

•

Gustavo Banegas 78

CSIDH - COMPUTATION

Step 1: Identify the Curve

• Given a supersingular elliptic curve E defined over Fp

• Example: E : y2 = x3 + Ax + Bwith specific A and B

•

•

•

Gustavo Banegas 79

CSIDH - COMPUTATION

Step 1: Identify the Curve

• Given a supersingular elliptic curve E defined over Fp

• Example: E : y2 = x3 + Ax + Bwith specific A and B

Step 2: Select a Point

•

•

•

Gustavo Banegas 80

CSIDH - COMPUTATION

Step 1: Identify the Curve

• Given a supersingular elliptic curve E defined over Fp

• Example: E : y2 = x3 + Ax + Bwith specific A and B

Step 2: Select a Point

• Choose a point P on E of order 3

•

•

Gustavo Banegas 81

CSIDH - COMPUTATION

Step 1: Identify the Curve

• Given a supersingular elliptic curve E defined over Fp

• Example: E : y2 = x3 + Ax + Bwith specific A and B

Step 2: Select a Point

• Choose a point P on E of order 3

• Ensure P is not the point at infinity

•

Gustavo Banegas 82

CSIDH - COMPUTATION

Step 1: Identify the Curve

• Given a supersingular elliptic curve E defined over Fp

• Example: E : y2 = x3 + Ax + Bwith specific A and B

Step 2: Select a Point

• Choose a point P on E of order 3

• Ensure P is not the point at infinity

• Example: P = (x1, y1)

Gustavo Banegas 83

CSIDH - COMPUTATION

Step 3: Compute the Kernel Polynomial

•

•

•

•

•

Gustavo Banegas 84

CSIDH - COMPUTATION

Step 3: Compute the Kernel Polynomial

• Kernel polynomial KP(x) is given by (x – x(P))

•

•

•

•

Gustavo Banegas 85

CSIDH - COMPUTATION

Step 3: Compute the Kernel Polynomial

• Kernel polynomial KP(x) is given by (x – x(P))

• For a point P = (x1, y1), KP(x) = x – x1

•

•

•

Gustavo Banegas 86

CSIDH - COMPUTATION

Step 3: Compute the Kernel Polynomial

• Kernel polynomial KP(x) is given by (x – x(P))

• For a point P = (x1, y1), KP(x) = x – x1

Step 4: Evaluate the Isogeny

•

•

•

Gustavo Banegas 87

CSIDH - COMPUTATION

Step 3: Compute the Kernel Polynomial

• Kernel polynomial KP(x) is given by (x – x(P))

• For a point P = (x1, y1), KP(x) = x – x1

Step 4: Evaluate the Isogeny

• Construct the isogeny ϕ with kernel 〈P〉

•

•

Gustavo Banegas 88

CSIDH - COMPUTATION

Step 3: Compute the Kernel Polynomial

• Kernel polynomial KP(x) is given by (x – x(P))

• For a point P = (x1, y1), KP(x) = x – x1

Step 4: Evaluate the Isogeny

• Construct the isogeny ϕ with kernel 〈P〉

• Use Vélu’s formulas to compute the new curve coefficients

•

Gustavo Banegas 89

CSIDH - COMPUTATION
Step 3: Compute the Kernel Polynomial

• Kernel polynomial KP(x) is given by (x – x(P))

• For a point P = (x1, y1), KP(x) = x – x1

Step 4: Evaluate the Isogeny

• Construct the isogeny ϕ with kernel 〈P〉

• Use Vélu’s formulas to compute the new curve coefficients

• Vélu’s formulas for ϕ:
ϕ(x) = x – ∑

R∈〈P〉\{O}

(
x – x(R)

x – x(P + R)

)

ϕ(y) = y ∏
R∈〈P〉\{O}

(
x – x(R)

x – x(P + R)

)1/2

Gustavo Banegas 90

Step 5: Iterate using the Secret Exponent

•

•

•

Gustavo Banegas 91

Step 5: Iterate using the Secret Exponent

• Let e be the secret exponent;

•

•

Gustavo Banegas 92

Step 5: Iterate using the Secret Exponent

• Let e be the secret exponent;

• Apply the degree-3 isogeny ϕ to E repeatedly e times;

•

Gustavo Banegas 93

Step 5: Iterate using the Secret Exponent

• Let e be the secret exponent;

• Apply the degree-3 isogeny ϕ to E repeatedly e times;

• After e applications, compute the final curve E′.

Gustavo Banegas 94

CONSTANT-TIME EVALUATION

Constant-time evaluation of the group action If the input is a CSIDH curve and a private key,
and the output is the result of the CSIDH action, then the algorithm time provides no
information about the private key, and provides no information about the output.
Secret keys (e1, . . . , en) ∈ Zn; public keys

EA′ =
(n

∏
i=1
geii

)
⋆ EA.

Gustavo Banegas 95

BATCHING

The batching idea
CSIDH-512 prime p = 4 · (3 · 5 · · · · · 373 · 587) – 1.

Gustavo Banegas 96

BATCHING

The batching idea
CSIDH-512 prime p = 4 · (3 · 5 · · · · · 373 · 587) – 1.
We start with the exponent vector (e1, . . . , en) ∈ Zn:

primes 3 5 7 11 13 17 19 23 29 31 . . .

exponent vector 1 -2 0 3 -1 1 0 2 -1 0 . . .

Gustavo Banegas 97

BATCHING

The batching idea
CSIDH-512 prime p = 4 · (3 · 5 · · · · · 373 · 587) – 1.
We start with the exponent vector (e1, . . . , en) ∈ Zn.
Now we split the primes into batches:

primes { 3 5 7 } { 11 13 17 19 } { 23 29 31 } . . .

exponent vector 1 -2 0 3 -1 1 0 2 -1 0 . . .

Gustavo Banegas 98

BATCHING
The batching idea
CSIDH-512 prime p = 4 · (3 · 5 · · · · · 373 · 587) – 1.
We start with the exponent vector (e1, . . . , en) ∈ Zn.
Now we group the entries in the exponent vector isogenies per batch:

primes { 3 5 7 } { 11 13 17 19 } { 23 29 31 } . . .

exponent vector 1 -2 0 3 -1 1 0 2 -1 0 . . .
per batch 3 5 3

exponent vector (e1, . . . , en) ∈ Zn comes from the subset in which we compute
• 3 {3, 5, 7}-isogenies,
• 5 {11, 13, 17, 19}-isogenies,
• and 3 {23, 29, 31}-isogenies.

Gustavo Banegas 99

BATCHING
The batching idea
CSIDH-512 prime p = 4 · (3 · 5 · · · · · 373 · 587) – 1.
We start with the exponent vector (e1, . . . , en) ∈ Zn.
Now we group the entries in the exponent vector isogenies per batch:

primes { 3 5 7 } { 11 13 17 19 } { 23 29 31 } . . .

exponent vector 1 -2 0 3 -1 1 0 2 -1 0 . . .
per batch 3 5 3

exponent vector (e1, . . . , en) ∈ Zn comes from the subset in which we compute
• up to 3 {3, 5, 7}-isogenies,
• up to 5 {11, 13, 17, 19}-isogenies,
• and up to 3 {23, 29, 31}-isogenies.

Gustavo Banegas 100

BATCHING

The batching idea
CSIDH-512 prime p = 4 · (3 · 5 · · · · · 373 · 587) – 1.
Now we group the isogenies per batch:

primes { 3 5 7 } { 11 13 17 19 } { 23 29 31 } . . .

exponent vector 1 -2 0 3 -1 1 0 2 -1 0 . . .
per batch 3 5 3

Batching Keyspace For B batches: For N ∈ ZB>0 andm ∈ ZB≥0, we define

KN,m :=
{

(e1, . . . , en) ∈ Zn |
∑Ni

j=1 |ei, j| ≤ mi for 1 ≤ i ≤ B
}

.

Gustavo Banegas 101

ISOGENY MAGIC

In CSIDH, start with prime p = 4ℓ1 . . . ℓn – 1 for ℓi small odd primes. Group action For every
ℓi | p + 1, we have an element gi that we can act with using ℓi-isogenies:

EA′ = gi ⋆ EA

Group action via isogenies

Gustavo Banegas 102

ISOGENY MAGIC

In CSIDH, start with prime p = 4ℓ1 . . . ℓn – 1 for ℓi small odd primes. Group action For every
ℓi | p + 1, we have an element gi that we can act with using ℓi-isogenies:

EA′ = gi ⋆ EA

Group action via isogenies
Replace the group element gi

gi : EA 7→ EA′

Gustavo Banegas 103

ISOGENY MAGIC
In CSIDH, start with prime p = 4ℓ1 . . . ℓn – 1 for ℓi small odd primes. Group action For every
ℓi | p + 1, we have an element gi that we can act with using ℓi-isogenies:

EA′ = gi ⋆ EA

Group action via isogenies
Replace the group element gi with an ℓi-isogeny ϕ:

ϕ : EA → EA′

Isogenies are algebraic group homomorphisms of elliptic curves

ϕ : y2 = x3 + Ax2 + x −→ y2 = x3 + A′x2 + x

(x, y) 7→ (f (x, y), g(x, y)) f , g rational functions over FpGustavo Banegas 104

ISOGENY MAGIC
In CSIDH, start with prime p = 4ℓ1 . . . ℓn – 1 for ℓi small odd primes. Group action For every
ℓi | p + 1, we have an element gi that we can act with using ℓi-isogenies:

EA′ = gi ⋆ EA

Group action via isogenies
Replace the group element gi with an ℓi-isogeny ϕ:

ϕ : EA → EA′

Isogenies are algebraic group homomorphisms of elliptic curves:

P ∈ EA 7→ ϕ(P) ∈ EA′

order ℓiN −→ order N.Gustavo Banegas 105

COMPUTING THE GROUP ACTION

Computing the action by gi ↔ ℓi Simplified algorithm to compute the group action EA′ = gi ⋆ EA:

1 find a point P of order ℓi on EA:
1 generate a point T of order p + 1 on EA,

2 multiply P = [p+1
ℓi

]T.

2 Compute the ℓi-isogeny ϕ : EA → EA′ with kernel P:
1 enumerate the multiples [i]P of the point P for i ∈ S,

with S = {1, 2, . . . , ℓ–1
2 } [?] or S = {1, 3, 5, . . . , ℓ – 2} [?],

2 construct a polynomial h(X) = ∏i∈S(x – x([i]P)),

3 Compute the coefficient A′ from h(X).

Gustavo Banegas 106

COMPUTING THE GROUP ACTION

Computing the action by gi ↔ ℓi Simplified algorithm to compute the group action EA′ = gi ⋆ EA:

1 find a point P of order ℓi on EA:
1 generate a point T of order p + 1 on EA,

2 multiply P = [p+1
ℓi

]T.

2 Compute the ℓi-isogeny ϕ : EA → EA′ with kernel P:
1 enumerate the multiples [i]P of the point P for i ∈ S,

with S = {1, 2, . . . , ℓ–1
2 } [?] or S = {1, 3, 5, . . . , ℓ – 2} [?],

2 construct a polynomial h(X) = ∏i∈S(x – x([i]P)),

3 Compute the coefficient A′ from h(X).

Gustavo Banegas 107

COMPUTING THE GROUP ACTION

Computing the action by gi ↔ ℓi Simplified algorithm to compute the group action EA′ = gi ⋆ EA:

1 find a point P of order ℓi on EA:
1 generate a point T of order p + 1 on EA,

2 multiply P = [p+1
ℓi

]T. Costs ≈ 10 log2(p) mult in Fp.

2 Compute the ℓi-isogeny ϕ : EA → EA′ with kernel P: Cost ≤ 6ℓi mult in Fp

1 enumerate the multiples [i]P of the point P for i ∈ S,

with S = {1, 2, . . . , ℓ–1
2 } [?] or S = {1, 3, 5, . . . , ℓ – 2} [?],

2 construct a polynomial h(X) = ∏i∈S(x – x([i]P)),

3 Compute the coefficient A′ from h(X).

Gustavo Banegas 108

AMORTIZE THE COST
Exponent vector (1, 1, 1, 0, . . . , 0)
We compute ℓi-isogenies for ℓ1 = 3 and ℓ2 = 5 and ℓ3 = 7:

1 Find a suitable point:
1 Generate a random point T of order p + 1,
2 Compute T1 =

[
p+1

3·5·7

]
T has exact order 3 · 5 · 7,

2 Compute the isogenies:
1 3-isogeny:

1 Compute P1 = [5 · 7]T1 has order 3,
2 Use P1 to construct 3-isogeny ϕ1,
3 Point T2 = ϕ1(T1) has order 5 · 7 on the new curve,

2 5-isogeny:
1 Compute P2 = [7]T2 has order 5,
2 Construct 5-isogeny ϕ2 with kernel P2,
3 The point T3 = ϕ2(T2) has order 7 on the new curve,

3 7-isogeny: construct the isogeny ϕ3 with kernel P3 = T3.

Gustavo Banegas 109

AMORTIZE THE COST
Exponent vector (1, 1, 1, 0, . . . , 0)
We compute ℓi-isogenies for ℓ1 = 3 and ℓ2 = 5 and ℓ3 = 7:

1 Find a suitable point:
1 Generate a random point T of order p + 1,
2 Compute T1 =

[
p+1

3·5·7

]
T has exact order 3 · 5 · 7,

2 Compute the isogenies:
1 3-isogeny:

1 Compute P1 = [5 · 7]T1 has order 3,
2 Use P1 to construct 3-isogeny ϕ1,
3 Point T2 = ϕ1(T1) has order 5 · 7 on the new curve,

2 5-isogeny:
1 Compute P2 = [7]T2 has order 5,
2 Construct 5-isogeny ϕ2 with kernel P2,
3 The point T3 = ϕ2(T2) has order 7 on the new curve,

3 7-isogeny: construct the isogeny ϕ3 with kernel P3 = T3.

Gustavo Banegas 110

TOWARDS ATOMIC BLOCKS
Exponent vector (1, 0, 1, 0, . . . , 0) We compute ℓi-isogenies for ℓ1 = 3 and ℓ3 = 7 but no 5-isogeny:

1 Find a suitable point:
1 Generate a random point T of order p + 1,
2 Compute T1 =

[
p+1

3·5·7

]
T has exact order 3 · 5 · 7,

2 Compute the isogenies:
1 3-isogeny:

1 Compute P1 = [5 · 7]T1 has order 3,
2 Use P1 to construct 3-isogeny ϕ1,
3 Point T2 = ϕ1(T1) has order 5 · 7 on the new curve,

2 No 5-isogeny:
1 Compute the isogeny as before but throw away the results,
2 Adjust to code to always compute [5]T2,
3 The point T3 = [5]T2 has order 7 on the same curve,

3 7-isogeny: construct the isogeny ϕ3 with kernel P3 = T3.
Gustavo Banegas 111

TOWARDS ATOMIC BLOCKS
Exponent vector (1, 0, 1, 0, . . . , 0) We compute ℓi-isogenies for ℓ1 = 3 and ℓ3 = 7 but no 5-isogeny:

1 Find a suitable point:
1 Generate a random point T of order p + 1,
2 Compute T1 =

[
p+1

3·5·7

]
T has exact order 3 · 5 · 7,

2 Compute the isogenies:
1 3-isogeny:

1 Compute P1 = [5 · 7]T1 has order 3,
2 Use P1 to construct 3-isogeny ϕ1,
3 Point T2 = ϕ1(T1) has order 5 · 7 on the new curve,

2 No 5-isogeny:
1 Compute the isogeny as before but throw away the results,
2 Adjust to code to always compute [5]T2,
3 The point T3 = [5]T2 has order 7 on the same curve,

3 7-isogeny: construct the isogeny ϕ3 with kernel P3 = T3.
Gustavo Banegas 112

ATOMIC BLOCKS
Definition (Atomic Blocks, simplified)
Let I = (I1, . . . , Ik) ∈ Zk be such that 1 ≤ I1 < I2 < · · · < Ik ≤ n.
An atomic block of length k is a probabilistic algorithm I taking inputs A and ϵ ∈ {0, 1}k and
returning A′ ∈ Fp such that EA′ = (∏i g

ϵi
Ii) ⋆ EA, satisfying

there is a function τ such that, for each (A, ϵ) the distribution of the time taken by I, given
that A′ is returned by I on input (A, ϵ), is τ(I).

Evaluating 3, 5, and 7-isogeny
On the previous slide, we saw an atomic block I with I = (1, 2, 3) that computes

EA′ = gϵ1
1 gϵ2

2 gϵ3
3 ⋆ EA

for (ϵ1, ϵ2, ϵ3) ∈ {0, 1}3 without leaking timing information about (ϵ1, ϵ2, ϵ3).
Gustavo Banegas 113

ATOMIC BLOCKS
Definition (Atomic Blocks, simplified)
Let I = (I1, . . . , Ik) ∈ Zk be such that 1 ≤ I1 < I2 < · · · < Ik ≤ n.
An atomic block of length k is a probabilistic algorithm I taking inputs A and ϵ ∈ {0, 1}k and
returning A′ ∈ Fp such that EA′ = (∏i g

ϵi
Ii) ⋆ EA, satisfying

there is a function τ such that, for each (A, ϵ) the distribution of the time taken by I, given
that A′ is returned by I on input (A, ϵ), is τ(I).

Evaluating 3, 5, and 7-isogeny
On the previous slide, we saw an atomic block I with I = (1, 2, 3) that computes

EA′ = gϵ1
1 gϵ2

2 gϵ3
3 ⋆ EA

for (ϵ1, ϵ2, ϵ3) ∈ {0, 1}3 without leaking timing information about (ϵ1, ϵ2, ϵ3).
Gustavo Banegas 114

ATOMIC BLOCKS FOR BATCHES
Atomic blocks for batches
Suppose we have batches {3, 5, 7}, {11, 13, 17}, . . . And we want to compute one 5-isogeny and
one 11-isogeny, i.e. exponent vector (0, 1, 0, 1, 0, 0, 0, . . .)

1 Find a suitable point:
1 Generate a random point T of order p + 1,
2 Compute T1 =

[
p+1

(3·5·7)(11·13·17)

]
T has order (3 · 5 · 7)(11 · 13 · 17).

2 Compute the isogenies:
1 {3, 5, 7}-isogeny:

1 Compute P1 = [(11 · 13 · 17)]T1 has order (3 · 5 · 7),
2 Use [3 · 7]P1 of order 5 to construct 5 -isogeny ϕ1,
3 Point T2 = [3 · 7]ϕ1(T1) has order 11 · 13 · 17 on the new curve,

2 {11, 13, 17}-isogeny:
1 Compute P2 = [13 · 17]T2 has order 11,
2 Construct 11-isogeny ϕ2 with kernel P2.Gustavo Banegas 115

ATOMIC BLOCKS FOR BATCHES
Atomic blocks for batches
Suppose we have batches {3, 5, 7}, {11, 13, 17}, . . . And we want to compute one 5-isogeny and
one 11-isogeny, i.e. exponent vector (0, 1, 0, 1, 0, 0, 0, . . .)

1 Find a suitable point:
1 Generate a random point T of order p + 1,
2 Compute T1 =

[
p+1

(3·5·7)(11·13·17)

]
T has order (3 · 5 · 7)(11 · 13 · 17).

2 Compute the isogenies:
1 {3, 5, 7}-isogeny:

1 Compute P1 = [(11 · 13 · 17)]T1 has order (3 · 5 · 7),
2 Use [3 · 7]P1 of order 5 to construct 5 -isogeny ϕ1,
3 Point T2 = [3 · 7]ϕ1(T1) has order 11 · 13 · 17 on the new curve,

2 {11, 13, 17}-isogeny:
1 Compute P2 = [13 · 17]T2 has order 11,
2 Construct 11-isogeny ϕ2 with kernel P2.Gustavo Banegas 116

ATOMIC BLOCKS FOR BATCHES
Suppose we have batches {3, 5, 7}, {11, 13, 17}, . . . And we want to compute one 5-isogeny and
one 11-isogeny, i.e. exponent vector (0, 1, 0, 1, 0, 0, 0, . . .)

1 Find a suitable point:

1 Generate a random point T of order p + 1,
2 Compute T1 =

[
p+1

(3·5·7)(11·13·17)

]
T has order (3 · 5 · 7)(11 · 13 · 17).

2 Compute the isogenies:

1 {3, 5, 7}-isogeny:
1 Compute P1 = [(11 · 13 · 17)]T1 has order (3 · 5 · 7),
2 Use [3 · 7]P1 of order 5 to construct 5-isogeny ϕ1,
3 Point T2 = [3 · 7]ϕ1(T1) has order 11 · 13 · 17 on the new curve,

2 {11, 13, 17}-isogeny:
1 Compute P2 = [13 · 17]T2 has order 11,
2 Construct 11-isogeny ϕ2 with kernel P2.

Gustavo Banegas 117

MATRYOSKHA ISOGENY

How to construct the isogeny with the same code for all primes in the batch:

Gustavo Banegas 118

MATRYOSKHA ISOGENY

How to construct the isogeny with the same code for all primes in the batch:
Matryoshka Isogeny for the batch {11, 13, 17}
Compute the 11-isogeny

1 enumerate the multiples [i]P of the point P for i ∈ S,

with S = {1, 2, . . . , 5}

2 construct h(X) = ∏
5
i=1(x – x([i]P)),

3 Compute the coefficient A′ from h(X).

Gustavo Banegas 119

MATRYOSKHA ISOGENY

How to construct the isogeny with the same code for all primes in the batch:
Matryoshka Isogeny for the batch {11, 13, 17}
Compute the��11 13-isogeny

1 enumerate the multiples [i]P of the point P for i ∈ S,

with S = {1, 2, . . . , 5, 6}

2 construct h(X) = ∏
5
i=1(x – x([i]P)) · (x – x([6]P)),

3 Compute the coefficient A′ from h(X).

Gustavo Banegas 120

MATRYOSKHA ISOGENY

How to construct the isogeny with the same code for all primes in the batch:
Matryoshka Isogeny for the batch {11, 13, 17}
Compute the��11��13 17-isogeny

1 enumerate the multiples [i]P of the point P for i ∈ S,

with S = {1, 2, . . . , 5, 6, 7, 8}

2 construct h(X) = ∏
5
i=1(x – x([i]P)) · (x – x([6]P)) · (x – x([7]P))(x – x([8]P)),

3 Compute the coefficient A′ from h(X).

Gustavo Banegas 121

QUICK RECAP

• We need to evaluate where the code will ran;

• We should use tools to verify our constant-time implementation;

• We might need to adapt a scheme to adequate constant-time;

• We have other ways of secure implement an implementation.

Gustavo Banegas 122

OPEN PROBLEMS

• Isogenies are a candidate on NIST (SQISign);

• Falcon needs a secure implementation (Floating point arithmetic);

• Improvements on the hardware implementation of Lattice schemes;

• Secure implementations of code-base schemes (HQC, McEliece, Bike).

Gustavo Banegas 123

QUESTIONS

Thank you to listen.
Questions?

gustavo@crytpme.in

Gustavo Banegas 124

Is This Constant Time?
A CHES drinking game

Game

• We’ll show C/C++ code snippets along with compiler (including
version), compilation flags and targets

• Guess if the code is constant time or not

• Don’t use Godbolt.org or you’ll kill the fun ☺

• If the majority of the room gets it right, we drink

ARM modular arithmetic

ARMv7-a Clang 11.0, -Ofast -mtune=cortex-m4

ARM modular arithmetic

ARMv7-a Clang 11.0, -Ofast -mtune=cortex-m4

ARM modular arithmetic

ARMv7-a Clang 11.0, -Ofast -mtune=cortex-m4

modular arithmetic

ARMv8-a Clang 16.0, -Ofast -mtune=cortex-m4

modular arithmetic

ARMv8-a Clang 16.0, -Ofast -mtune=cortex-m4

modular arithmetic

ARMv8-a Clang 16.0, -Ofast -mtune=cortex-m4

modular arithmetic

ARMv7-a Clang 16.0, –Ofast -mtune=cortex-m3

modular arithmetic

ARMv7-a Clang 16.0, –Ofast -mtune=cortex-m3

modular arithmetic

ARMv7-a Clang 16.0, –Ofast -mtune=cortex-m3

Compact Dilithium implementations
on Cortex-M3 and Cortex M-4
Greconici et Al.

HQC reference code

X86-64 Clang-16.0, -Ofast

NOT CLAIMED TO BE CONSTANT-TIME

HQC reference code

X86-64 Clang-16.0, -Ofast

NOT CLAIMED TO BE CONSTANT-TIME

HQC reference code

X86-64 Clang-16.0, -Ofast

NOT CLAIMED TO BE CONSTANT-TIME

HQC reference code

X86-64 GCC 13.2, -Ofast

NOT CLAIMED TO BE CONSTANT-TIME

HQC reference code

X86-64 GCC 13.2, -Ofast

NOT CLAIMED TO BE CONSTANT-TIME

HQC reference code

X86-64 GCC 13.2, -Ofast

NOT CLAIMED TO BE CONSTANT-TIME

RISC-V arrays comparison

rv32gc Clang 15.0, -Ofast

RISC-V arrays comparison

rv32gc Clang 15.0, -Ofast

RISC-V arrays comparison

rv32gc Clang 15.0, -Ofast

RISC-V Comparisons

C, rv32gc Clang 15.0, -Ofast

RISC-V Comparisons

C, rv32gc Clang 15.0, -Ofast

RISC-V Comparisons

C, rv32gc Clang 15.0, -Ofast

RISC-V Comparisons

C, rv32gc Clang 15.0, -Ofast

RISC-V Comparisons

C, rv32gc Clang 15.0, -Ofast

RISC-V Comparisons

C, rv32gc Clang 15.0, -Ofast

RISC-V Comparisons

C, rv32gc Clang 16.0, -Ofast

RISC-V Comparisons

C, rv32gc Clang 16.0, -Ofast

RISC-V Comparisons

C, rv32gc Clang 16.0, -Ofast

