
Foundations of
Layer-2 Blockchain Protocols

Croatia Summer School on Real-World Crypto and Privacy
 June 4, 2024

Matteo Maffei

Foundations of
Layer-2 Blockchain Protocols

Croatia Summer School on Real-World Crypto and Privacy
 June 4, 2024

Matteo Maffei

Why everyone should do
research on blockchains 😇

‣ Intro to Blockchains, Insights and Challenges
‣ Layer-2 Protocols for Scalability, Privacy, and

more in Bitcoin
‣ Open Research Directions

Outline

Joint Work With...

P. Moreno-Sanchez

C. Schneidewind

E. Tairi L. Aymayr

G. Malavolta

A. Kate

Sri Aravinda Krishnan Thyagarayan
B. Haslofer

Matteo Romiti
Fridhelm Victor P. Nordholt

S. Faust A. Erwig S. Riahi

K. Hostáková

G. Avarikioti G. Scaffino

S. Mazumdar

Blockchain’s Evolution

Scientific Innovation
Programmability, Privacy,

Scalability, Energy-friendliness,…

Blockchain’s Evolution

Scientific Innovation
Programmability, Privacy,

Scalability, Energy-friendliness,…

Societal Impact
Decentralized, censorship-resistant,

instantaneous, wealth-storing finance

Blockchain Architecture

Blockchain Architecture

The reason why all
of that works goes
beyond standard

cryptography,
distributed system, and

secure programming
results…

Blockchain Architecture

John Nash

Game
Theory

The reason why all
of that works goes
beyond standard

cryptography,
distributed system, and

secure programming
results…

Blockchain Architecture

Blockchain Architecture

Blockchain Architecture

Layer-2 Protocols for Bitcoin

Scalability Issue

3

‣ Blockchain records every transaction

Scalability Issue

3

‣ Blockchain records every transaction
‣ Everyone has to check the whole blockchain

Scalability Issue

3

‣ Blockchain records every transaction
‣ Everyone has to check the whole blockchain

Scalability Issue

Bitcoin’s transaction rate: ~10 tx/sec
Visa’s transaction rate: ~10K tx/sec

3

Scalability

4

‣On-chain, consensus layer  
e.g., DAG Blockchain, sharding, ...  

‣Off-chain, application layer  
e.g., Payment Channel Networks, Rollups

Scalability

4

‣On-chain, consensus layer  
e.g., DAG Blockchain, sharding, ...  

‣Off-chain, application layer  
e.g., Payment Channel Networks, Rollups

‣ Decentralized data structure recording each
transaction in order to provide public
verifiability

‣ Global consensus: everyone checks the
whole blockchain

Scalability

‣On-chain, consensus layer  
e.g., DAG Blockchain, sharding, ...  

‣Off-chain, application layer  
e.g., Payment Channel Networks, Rollups

‣On-chain, consensus layer  
e.g., DAG Blockchain, sharding, ...  

‣Off-chain, application layer  
e.g., Payment Channel Networks, Rollups

Exchange transactions locally off-chain, blockchain only for disputes

4

Lightning Network
(300M $ total value locked)

Payment Channels

13

Two nodes transact with each other without using the blockchain

Payment Channels

Alice Bob

Payment Channels: Open

Alice Bob

Blockchain

Alice: 5
(Alice,Bob): 5

Alice

Multisig Contract

Can be spent only with the signatures of
both Alice and Bob

5 1

Payment Channels: One-Way Transactions

Alice Bob

Blockchain

(Alice,Bob): 5 Alice: 4

Bob: 1
Alice

Bob??

Alice: 5
(Alice,Bob): 5

Alice

4 1

Payment Channels: One-Way Transactions

Alice Bob

Blockchain

(Alice,Bob): 5 Alice: 3

Bob: 2
Alice

Bob??

Alice: 5
(Alice,Bob): 5

Alice

Bob has an interest in
publishing the last

channel state...

3 2

Payment Channels: Closure

Alice Bob

Blockchain

(Alice,Bob): 5 Alice: 3

Bob: 2
Alice

Bob

Alice: 5
(Alice,Bob): 5

Alice

‣ What if Bob stops communicating? Alice would lose
the money she locked in the channel

• We need a way to prevent DOS attacks
‣ What if some intermediate state is more advantageous

for Bob? He could publish an old channel state
• We need a way to prevent channel unrolling

attacks...

Two Problems

Payment Channels: First Transaction

Blockchain

Alice: 5 (Alice,Bob): 10

Alice

Bob: 5

Bob

Alice Bob

Step 1:
Create Open Transaction (Off-Chain)

??
??

Payment Channels: First Transaction

Blockchain

Alice: 5 (Alice,Bob): 10

Alice

Bob: 5

Bob

Alice Bob

Step 1:
Create Open Transaction (Off-Chain)
Step 2:
Create secrets and exchange respective hashes

??
??

Payment Channels: First Transaction

Blockchain

Alice: 5 (Alice,Bob): 10

Alice

Bob: 5

Bob

Alice Bob

Step 3:
Commitment Transaction
(Off-Chain)

Step 1:
Create Open Transaction (Off-Chain)

(Alice,Bob): 10 Bob: 6

Alice: 4

Alice

Bob

?? Bob: 4
∨

Hashlock contract

Alice can get the money only if she
knows the preimage of the hash

 blocks after the transaction is posted,
Bob can claim the money too

(Alice,Bob): 10 Alice: 4

Bob: 6Bob??
Alice: 6

∨
Alice

>

>

CSV (CheckSequenceVerify) timelock
gives Alice the time to steal the money
from Bob after he drops the transaction

(relative time delay)

Step 2:
Create secrets and exchange respective hashes

??
??

Payment Channels: First Transaction

Blockchain

Alice: 5 (Alice,Bob): 10

Alice

Bob: 5

Bob

Alice Bob

Step 3:
Commitment Transaction
(Off-Chain)

Step 1:
Create Open Transaction (Off-Chain)

Step 4:
Sign and Push Open Transaction (On-Chain)

(Alice,Bob): 10 Bob: 6

Alice: 4

Alice

Bob

?? Bob: 4
∨

Hashlock contract

Alice can get the money only if she
knows the preimage of the hash

 blocks after the transaction is posted,
Bob can claim the money too

(Alice,Bob): 10 Alice: 4

Bob: 6Bob??
Alice: 6

∨
Alice

>

>

CSV (CheckSequenceVerify) timelock
gives Alice the time to steal the money
from Bob after he drops the transaction

(relative time delay)

Step 2:
Create secrets and exchange respective hashes

Alice

Payment Channels: State Change

Blockchain

Alice: 5 (Alice,Bob): 10

Alice

Bob: 5

Bob

Alice Bob

Alice and Bob generate new hashes
and exchange the preimage of the old ones

Old secrets are useless,
unless one party publishes

an old state: in this case
the other party can steal all

the money from the
channel!

(Alice,Bob): 10 Bob: 5

Alice: 5

Alice

Bob

?? Bob: 5
∨

(Alice,Bob): 10 Alice: 5

Bob: 5Bob??
Alice: 5

∨
Alice

>

>

Alice

Payment Channels: State Change

Blockchain

Alice: 5 (Alice,Bob): 10

Alice

Bob: 5

Bob

Alice Bob

Alice and Bob generate new hashes
and exchange the preimage of the old ones

Old secrets are useless,
unless one party publishes

an old state: in this case
the other party can steal all

the money from the
channel!

(Alice,Bob): 10 Bob: 5

Alice: 5

Alice

Bob

?? Bob: 5
∨

(Alice,Bob): 10 Alice: 5

Bob: 5Bob??
Alice: 5

∨
Alice

>

>

Game theoretic security
parties follow the protocol,
otherwise they lose money

‣ Arbitrarily many payments with just two
messages on-chain (opening and closure) 🙂

‣ One cannot open a channel with everyone,
too expensive (fees plus locked coins) ☹

Take Home

Payment Channel Networks

23

Create a network and perform multi-hop transactions

Payment Channel Networks (PCNs)

4 1 2 3

Alice Bob Carol
Send

1 BTC to Carol

Payment Channel Networks (PCNs)

4 1 2 3

Alice Bob Carol

Bob
2 33 2

CarolAlice

1. Send 1 BTC

Send
1 BTC to Carol

Payment Channel Networks (PCNs)

4 1 2 3

Alice Bob Carol

Bob
2 33 2

CarolAlice

1. Send 1 BTC

Send
1 BTC to Carol

3 2 1 4

Alice Bob Carol
2. Forward 1 BTC to

Carol

Should happen atomically

Payment Channel Networks (PCNs)

4 1 2 3

Alice Bob Carol

Bob
2 33 2

CarolAlice

1. Send 1 BTC

Send
1 BTC to Carol

3 2 1 4

Alice Bob Carol
2. Forward 1 BTC to

Carol

Should happen atomically

Payment Channel Networks (PCNs)

4 1 2 3

Alice Bob Carol

Bob
2 33 2

CarolAlice

1. Send 1 BTC

Send
1 BTC to Carol

Fee acts as an incentive for
Bob to participate in the

payment

3 2 1 4

Alice Bob Carol
2. Forward 1 BTC to

Carol

3-fee 2f 
e  
e

3-fee 2f 
e  
e

1. Send 1 BTC + fee
to Bob

‣ Since the hash is the same in both transactions, if Carol gets her money
then Bob can get her money too!

‣ It is crucial that > in order to give Bob the time to get his
money from Alice after Carol posts her transaction

HTLC for Path-Based Payments

Alice: 1+fee

 Alice: 1+feeAlice

 Bob: 1+fee
∨

>

1

2 3

45

Bob: 1

Bob: 1Bob

Carol: 1
∨ >

CLTV (CheckLockTimeVerify)
timelock makes the transaction valid

only after a certain absolute time (e.g.,
block number)

Putting all pieces together...

Blockchain

Alice: 5 (Alice,Bob): 10

Alice

Bob: 5

Bob

Alice Bob

(Alice,Bob): 10

Alice: 4-fee

Alice

Bob??

Bob: 5

Alice: 5
∨ >

Bob: 1+fee

Alice: 1+fee

Alice: 1+fee

∨

>

>

(Alice,Bob): 10

Bob: 5

Bob

Alice??

Alice: 4-fee

Bob: 4-fee
∨ >

Bob: 1+fee

Bob: 1+fee

Alice: 1+fee

∨

>>

Alice

Payment Channels: Optimistic Settlement

Blockchain

Alice: 5 (Alice,Bob): 10

Alice

Bob: 5

Bob

Alice Bob

At this point, Alice and Bob
can safely reset the state of
the channel, dropping the
HTLC condition in order to

keep the channel open

(Alice,Bob): 10 Bob: 6

Alice: 4

Alice

Bob

?? Bob: 4
∨

(Alice,Bob): 10 Alice: 4

Bob: 6Bob??
Alice: 6

∨
Alice

>

>

Payment Channels: Closure

Blockchain

Alice: 5 (Alice,Bob): 10

Alice

Bob: 5

Bob

Alice Bob

(Alice,Bob): 10 Bob: 6

Alice: 4
Alice

Bob

‣ Lightning Network & Co work allow us to perform payments offchain
• fast, no confirmation delay
• little fees
• no blockchain overloading
• secure and privacy-preserving (at a first glance...)

‣ The blockchain is used only to mediate disputes

Take Home

HTLC (Alice, Bob, 1, y, 3):
Alice pays Bob 1 BTC iff Bob shows some

x such that H(x) = y before 3 days 4.x

2.HTLC(Alice, Bob, 1+fee, y, 3) 3.HTLC(Bob, Carol, 1, y, 2)

x : H(x) = y

5.x

1.y

Security and Privacy Issues in Existing PCNs

ACM CCS 2017

NDSS 2019

Security + Privacy in PCNs

Are off-chain payments in PCNs privacy-preserving
 by default?

(individual payments are not recorded on the blockchain!)

Are off-chain payments in PCNs secure?
(No honest participant looses money!)

Security + Privacy in PCNs

Are off-chain payments in PCNs privacy-preserving
 by default?

(individual payments are not recorded on the blockchain!)

Are off-chain payments in PCNs secure?
(No honest participant looses money!)

NO!

NO!

Security Issue: The Wormhole Attack

A CE1 E2

HTLC(A, E1,1.3,y, t1) HTLC(E1, B,1.2,y, t2) HTLC(B, E2,1.1,y, t3) HTLC(E2, C,1,y, t4)

y:= H(x)

x

B

Security Issue: The Wormhole Attack

A CE1 E2

HTLC(A, E1,1.3,y, t1) HTLC(E1, B,1.2,y, t2) HTLC(B, E2,1.1,y, t3) HTLC(E2, C,1,y, t4)

y:= H(x)

x

x
B

Security Issue: The Wormhole Attack

A CE1 E2

HTLC(A, E1,1.3,y, t1) HTLC(E1, B,1.2,y, t2) HTLC(B, E2,1.1,y, t3) HTLC(E2, C,1,y, t4)

y:= H(x)

x

x

x

B

Security Issue: The Wormhole Attack

A CE1 E2

HTLC(A, E1,1.3,y, t1) HTLC(E1, B,1.2,y, t2) HTLC(B, E2,1.1,y, t3) HTLC(E2, C,1,y, t4)

y:= H(x)

x

x

x

x
B

Security Issue: The Wormhole Attack

A CE1 E2

HTLC(A, E1,1.3,y, t1) HTLC(E1, B,1.2,y, t2) HTLC(B, E2,1.1,y, t3) HTLC(E2, C,1,y, t4)

y:= H(x)

x

x

x

x

B considers the payment to be
failed and unlocks his funds

after the timeout

B

Security Issue: The Wormhole Attack

A CE1 E2

HTLC(A, E1,1.3,y, t1) HTLC(E1, B,1.2,y, t2) HTLC(B, E2,1.1,y, t3) HTLC(E2, C,1,y, t4)

y:= H(x)

x

x

x

x

B considers the payment to be
failed and unlocks his funds

after the timeout

B

gets 1.3 (no
payment to B)

pays 1 (no payment
from B)

Attacker earns 0.3 BTC (own fees + B’s fees)

Privacy Issues in HTLC Payments

A C

E1 E2

HTLC(A,E1,v1,y,t1)

HTLC(E1,B,v2,y,t2) HTLC(B,E2,v3,y,t3)

HTLC(E2,C,v4,y,t4)

B

A’
C’

Relationship Anonymity: On-path adversaries do not learn who pays to whom

HTLC(A,E1,v1,y’,t1)

HTLC(E1,B,v2,y’,t2) HTLC(B,E2,v3,y’,t3)

HTLC(E2,C,v4,y’,t4)

Privacy Issues in HTLC Payments

A C

E1 E2

HTLC(A,E1,v1,y,t1)

HTLC(E1,B,v2,y,t2) HTLC(B,E2,v3,y,t3)

HTLC(E2,C,v4,y,t4)

B

A’
C’

pays to

pays to
≈ pays to

pays to

Relationship Anonymity: On-path adversaries do not learn who pays to whom

HTLC(A,E1,v1,y’,t1)

HTLC(E1,B,v2,y’,t2) HTLC(B,E2,v3,y’,t3)

HTLC(E2,C,v4,y’,t4)

Privacy Issues in HTLC Payments

A C

E1 E2

HTLC(A,E1,v1,y,t1)

HTLC(E1,B,v2,y,t2) HTLC(B,E2,v3,y,t3)

HTLC(E2,C,v4,y,t4)

B

A’
C’

pays to

pays to
≈ pays to

pays to

Relationship Anonymity: On-path adversaries do not learn who pays to whom

HTLC(A,E1,v1,y’,t1)

HTLC(E1,B,v2,y’,t2) HTLC(B,E2,v3,y’,t3)

HTLC(E2,C,v4,y’,t4)

Privacy Issues in HTLC Payments

A C

E1 E2

HTLC(A,E1,v1,y,t1)

HTLC(E1,B,v2,y,t2) HTLC(B,E2,v3,y,t3)

HTLC(E2,C,v4,y,t4)

B

A’
C’

pays to

pays to
≈ pays to

pays to

Relationship Anonymity: On-path adversaries do not learn who pays to whom

HTLC(A,E1,v1,y’,t1)

HTLC(E1,B,v2,y’,t2) HTLC(B,E2,v3,y’,t3)

HTLC(E2,C,v4,y’,t4)

Fulgor

HTLC(A, E1,1.3,C1,t1) HTLC(E1,B,1.2,C2,t2) HTLC(B,E2,1.1,C3,t3) HTLC(E2,C,1,C4, t4)

(k4, C4)(k2, C2) (k3, C3) (k1 + k2 + k3 + k4)

H(k1) H(k1 + k2) H(k1 + k2 + k3)

A CE1 E2B

H(k1 + k2 + k3 + k4)

ACM CCS 2018

Fulgor

HTLC(A, E1,1.3,C1,t1) HTLC(E1,B,1.2,C2,t2) HTLC(B,E2,1.1,C3,t3) HTLC(E2,C,1,C4, t4)

(k4, C4)(k2, C2) (k3, C3) (k1 + k2 + k3 + k4)

H(k1) H(k1 + k2) H(k1 + k2 + k3)

A CE1 E2B

H(k1 + k2 + k3 + k4)

Conditions look random
(as they differ by a secret random

factor)

ACM CCS 2018

Fulgor

HTLC(A, E1,1.3,C1,t1) HTLC(E1,B,1.2,C2,t2) HTLC(B,E2,1.1,C3,t3) HTLC(E2,C,1,C4, t4)

(k4, C4)(k2, C2) (k3, C3) (k1 + k2 + k3 + k4)

H(k1) H(k1 + k2) H(k1 + k2 + k3)

A CE1 E2

(k1 + k2 + k3 + k4)

B

H(k1 + k2 + k3 + k4)

Conditions look random
(as they differ by a secret random

factor)

ACM CCS 2018

Fulgor

HTLC(A, E1,1.3,C1,t1) HTLC(E1,B,1.2,C2,t2) HTLC(B,E2,1.1,C3,t3) HTLC(E2,C,1,C4, t4)

(k4, C4)(k2, C2) (k3, C3) (k1 + k2 + k3 + k4)

H(k1) H(k1 + k2) H(k1 + k2 + k3)

A CE1 E2

(k1 + k2 + k3 + k4)

B

H(k1 + k2 + k3 + k4)

(k1 + k2 + k3)

- k4

Conditions look random
(as they differ by a secret random

factor)

ACM CCS 2018

Fulgor

HTLC(A, E1,1.3,C1,t1) HTLC(E1,B,1.2,C2,t2) HTLC(B,E2,1.1,C3,t3) HTLC(E2,C,1,C4, t4)

(k4, C4)(k2, C2) (k3, C3) (k1 + k2 + k3 + k4)

H(k1) H(k1 + k2) H(k1 + k2 + k3)

A CE1 E2

(k1 + k2 + k3 + k4)

B

H(k1 + k2 + k3 + k4)

(k1 + k2 + k3)(k1 + k2)

- k3 - k4

Conditions look random
(as they differ by a secret random

factor)

ACM CCS 2018

Fulgor

HTLC(A, E1,1.3,C1,t1) HTLC(E1,B,1.2,C2,t2) HTLC(B,E2,1.1,C3,t3) HTLC(E2,C,1,C4, t4)

(k4, C4)(k2, C2) (k3, C3) (k1 + k2 + k3 + k4)

H(k1) H(k1 + k2) H(k1 + k2 + k3)

A CE1 E2

(k1 + k2 + k3 + k4)

B

H(k1 + k2 + k3 + k4)

(k1 + k2 + k3)(k1 + k2)k1

- k2 - k3 - k4

Conditions look random
(as they differ by a secret random

factor)

ACM CCS 2018

Fulgor

HTLC(A, E1,1.3,C1,t1) HTLC(E1,B,1.2,C2,t2) HTLC(B,E2,1.1,C3,t3) HTLC(E2,C,1,C4, t4)

(k4, C4)(k2, C2) (k3, C3) (k1 + k2 + k3 + k4)

H(k1) H(k1 + k2) H(k1 + k2 + k3)

A CE1 E2

(k1 + k2 + k3 + k4)

B

H(k1 + k2 + k3 + k4)

(k1 + k2 + k3)(k1 + k2)k1

A valid key can only be
extracted from a valid key

for the right lock

- k2 - k3 - k4

Conditions look random
(as they differ by a secret random

factor)

ACM CCS 2018

Fulgor

HTLC(A, E1,1.3,C1,t1) HTLC(E1,B,1.2,C2,t2) HTLC(B,E2,1.1,C3,t3) HTLC(E2,C,1,C4, t4)

(k4, C4)(k2, C2) (k3, C3) (k1 + k2 + k3 + k4)

H(k1) H(k1 + k2) H(k1 + k2 + k3)

A CE1 E2

(k1 + k2 + k3 + k4)

B

H(k1 + k2 + k3 + k4)

(k1 + k2 + k3)(k1 + k2)k1

A valid key can only be
extracted from a valid key

for the right lock

- k2 - k3 - k4

Conditions look random
(as they differ by a secret random

factor)

What if A is compromised?

ACM CCS 2018

Fulgor

HTLC(A, E1,1.3,C1,t1) HTLC(E1,B,1.2,C2,t2) HTLC(B,E2,1.1,C3,t3) HTLC(E2,C,1,C4, t4)

(k4, C4)(k2, C2) (k3, C3) (k1 + k2 + k3 + k4)

H(k1) H(k1 + k2) H(k1 + k2 + k3)

A CE1 E2

(k1 + k2 + k3 + k4)

B

H(k1 + k2 + k3 + k4)

(k1 + k2 + k3)(k1 + k2)k1

A valid key can only be
extracted from a valid key

for the right lock

- k2 - k3 - k4

Conditions look random
(as they differ by a secret random

factor)

What if A is compromised? Intermediaries could lose money!

ACM CCS 2018

Fulgor

HTLC(A, E1,1.3,C1,t1) HTLC(E1,B,1.2,C2,t2) HTLC(B,E2,1.1,C3,t3) HTLC(E2,C,1,C4, t4)

(k4, C4, ZKP4)(k2, C2 , ZKP2) (k3, C3 , ZKP3) (k1 + k2 + k3 + k4)

H(k1) H(k1 + k2) H(k1 + k2 + k3)

A CE1 E2

(k1 + k2 + k3 + k4)

B

H(k1 + k2 + k3 + k4)

(k1 + k2 + k3)(k1 + k2)k1

- k2 - k3 - k4

A sends a Zero-Knowledge Proof that
Ci is well formed

ZKPi={∃x . Ci−1 = H(x) ∧ Ci = H(ki + x)}

ACM CCS 2018

Fulgor

HTLC(A, E1,1.3,C1,t1) Lock(E1,B,1.2,C2,t2) Lock(B,E2,1.1,C3,t3) Lock(E2,C,1,C4, t4)

(k4, C4, ZKP4)(k2, C2 , ZKP2) (k3, C3 , ZKP3) (k1 + k2 + k3 + k4)

H(k1) H(k1 + k2) H(k1 + k2 + k3)

A CE1 E2

(k1 + k2 + k3 + k4)

B

H(k1 + k2 + k3 + k4)

(k1 + k2 + k3)(k1 + k2)k1

- k2 - k3 - k4

Achieved Properties

No coin loss

1.Atomicity:
If a user’s right lock gets
opened, he can open his
left lock

2.Consistency:
A user can open his left lock
only if his right lock was
released

3.Relationship Anonymity:
A user learns about no other
participant of the payment
path than his direct
neighbours

No Wormhole Attacks Privacy

ACM CCS 2018

‣ In a follow-up work, we integrated the randomness  
in the signature itself (adaptor signatures),  
getting rid of HTCLs
‣ Constructions for ECDSA and Schnorr
‣ Implemented in the Lightning Network https://github.com/cfromknecht/tpec
‣ Compatibility with currencies without HTLCs (e.g., Monero)
‣ Transactions look the same as normal Bitcoin payments (fungibility)
‣ More efficient (Fulgor 5 MB communication, AMHL <500 bytes and 50ms

computation)
‣ Originated the Point Time Locked Constracts (PTLC) BIP proposal

Anonymous Multi-Hop Locks (AMHL)
NDSS 2019

https://github.com/cfromknecht/tpec

‣ Invented by the cryptographic community (Polstra, Blockstream)
‣ An adaptor signature scheme is essentially a two-step signing

algorithm bound to a secret, with each step corresponding to a
property (adaptability and extractability):
‣ a partial signature is generated such that it can be completed only

by a party knowing a certain secret (adaptability)
‣ the complete signature reveals such a secret (extractability)

‣ We gave the first construction for ECDSA (used in Bitcoin)
‣ For a formal definition look at our paper:

Adaptor Signatures

Asiacrypt 2021

Scriptless Scripts

yy

5

Scriptless Scripts

Alice
(skA)

Bob
(skB)yy

AB

Cryptographic “shared identity”

skAB = skA * skB

pkAB = pkA * pkBBlockchain

5 (Alice)

5 (Alice,Bob)

5 (Alice)

≤

>
5 (Alice)

5 (AB)

5 (Alice)

≤

>
Alice

∨

5

Scriptless Scripts
4 1

Alice
(skA)

Bob
(skB)yy

AB

Cryptographic “shared identity”

skAB = skA * skB

pkAB = pkA * pkBBlockchain

5 (Alice)

5 (Alice,Bob)

5 (Alice)

≤

>
5 (Alice)

5 (AB)

5 (Alice)

≤

>
Alice

∨

5 (AB)
4 (Alice)

1 (Bob)

y
AB ??k

Alice creates half a
signature, Bob the other half,

and they can be combined
into a half-signature

5

Scriptless Scripts
4 1

Alice
(skA)

Bob
(skB)yy

AB

Cryptographic “shared identity”

skAB = skA * skB

pkAB = pkA * pkBBlockchain

5 (Alice)

5 (Alice,Bob)

5 (Alice)

≤

>
5 (Alice)

5 (AB)

5 (Alice)

≤

>
Alice

∨

5 (AB)
4 (Alice)

1 (Bob)

y
AB ??k

Alice can retrieve secret
k from full signature

Bob gets sufficient
information for checking that

the “half signature”
produced by Alice and Bob

can be completed to a valid
signature given k

Alice creates half a
signature, Bob the other half,

and they can be combined
into a half-signature

5

Scriptless Scripts
4 1

Alice
(skA)

Bob
(skB)yy

AB

Cryptographic “shared identity”

skAB = skA * skB

pkAB = pkA * pkBBlockchain

5 (Alice)

5 (Alice,Bob)

5 (Alice)

≤

>
5 (Alice)

5 (AB)

5 (Alice)

≤

>
Alice

∨

5 (AB)
4 (Alice)

1 (Bob)

y
AB ??k

Alice can retrieve secret
k from full signature

Bob gets sufficient
information for checking that

the “half signature”
produced by Alice and Bob

can be completed to a valid
signature given k

At this point, we can construct a payment path like
we did for Fulgor, just that the secrets are not

hashed but embedded into the signatures

Alice creates half a
signature, Bob the other half,

and they can be combined
into a half-signature

Schnorr-based Adaptor Signature

pkI = xI ⋅ G
skI = xI

sig(rI, m, sk, pk) = (RI, rI − ski ⋅ H(pki | |RI | |m))
RI = rI ⋅ G

Schnorr Signature for I

Schnorr-based Adaptor Signature

Lo
ck

 P
ro

to
co

l C=k*G, condition

pkI = xI ⋅ G
skI = xI

sig(rI, m, sk, pk) = (RI, rI − ski ⋅ H(pki | |RI | |m))

rB − skB ⋅ H(pkA ⋅ pkB | |RA + RB + C | |m)

(rA + rB) − (skA + skB) ⋅ H(pkA + pkB | |RA + RB + C | |m)

RI = rI ⋅ G
Schnorr Signature for I

rA − skA ⋅ H(pkA ⋅ pkB | |RA + RB + C | |m)

(rA + rB) − (skA + skB) ⋅ H(pkA + pkB | |RA + RB + C | |m)

Schnorr-based Adaptor Signature

Lo
ck

 P
ro

to
co

l C=k*G, condition

pkI = xI ⋅ G
skI = xI

sig(rI, m, sk, pk) = (RI, rI − ski ⋅ H(pki | |RI | |m))

rB − skB ⋅ H(pkA ⋅ pkB | |RA + RB + C | |m)

(rA + rB) − (skA + skB) ⋅ H(pkA + pkB | |RA + RB + C | |m)

RI = rI ⋅ G
Schnorr Signature for I

rA − skA ⋅ H(pkA ⋅ pkB | |RA + RB + C | |m)

(rA + rB) − (skA + skB) ⋅ H(pkA + pkB | |RA + RB + C | |m)

Alice can retrieve secret
k from full signature

Bob gets sufficient
information for checking that

the “half signature”
produced by Alice and Bob

can be completed to a valid
signature given k

Schnorr-based Adaptor Signature

Lo
ck

 P
ro

to
co

l C=k*G, condition

pkI = xI ⋅ G
skI = xI

sig(rI, m, sk, pk) = (RI, rI − ski ⋅ H(pki | |RI | |m))

rB − skB ⋅ H(pkA ⋅ pkB | |RA + RB + C | |m)

(rA + rB) − (skA + skB) ⋅ H(pkA + pkB | |RA + RB + C | |m)

RI = rI ⋅ G
Schnorr Signature for I

rA − skA ⋅ H(pkA ⋅ pkB | |RA + RB + C | |m)

(rA + rB) − (skA + skB) ⋅ H(pkA + pkB | |RA + RB + C | |m)

Alice can retrieve secret
k from full signature

Bob gets sufficient
information for checking that

the “half signature”
produced by Alice and Bob

can be completed to a valid
signature given k

(Efficient) ZKPs are
required to show that

half signatures are well-
formed with respect to

the public RA and RB

Extension to Multi-hop Locks

Lock(A, E1,1.3,C1,t1) Lock(E1,B,1.2,C2,t2) Lock(B,E2,1.1,C3,t3) Lock(E2,C,1,C4, t4)

(k4, C4, ZKP4)(k2, C2,ZKP2) (k3, C3,ZKP3) (k1 + k2 + k3 + k4)

k1*G (k1 + k2)*G (k1 + k2 + k3)*G

A CE1 E2B

(k1 + k2 + k3 + k4)*G

Extension to Multi-hop Locks

Lock(A, E1,1.3,C1,t1) Lock(E1,B,1.2,C2,t2) Lock(B,E2,1.1,C3,t3) Lock(E2,C,1,C4, t4)

(k4, C4, ZKP4)(k2, C2,ZKP2) (k3, C3,ZKP3) (k1 + k2 + k3 + k4)

k1*G (k1 + k2)*G (k1 + k2 + k3)*G

A CE1 E2

(k1 + k2 + k3 + k4)

B

(k1 + k2 + k3 + k4)*G

Extension to Multi-hop Locks

Lock(A, E1,1.3,C1,t1) Lock(E1,B,1.2,C2,t2) Lock(B,E2,1.1,C3,t3) Lock(E2,C,1,C4, t4)

(k4, C4, ZKP4)(k2, C2,ZKP2) (k3, C3,ZKP3) (k1 + k2 + k3 + k4)

k1*G (k1 + k2)*G (k1 + k2 + k3)*G

A CE1 E2

(k1 + k2 + k3 + k4)

B

(k1 + k2 + k3 + k4)*G

(k1 + k2 + k3)

- k4

Extension to Multi-hop Locks

Lock(A, E1,1.3,C1,t1) Lock(E1,B,1.2,C2,t2) Lock(B,E2,1.1,C3,t3) Lock(E2,C,1,C4, t4)

(k4, C4, ZKP4)(k2, C2,ZKP2) (k3, C3,ZKP3) (k1 + k2 + k3 + k4)

k1*G (k1 + k2)*G (k1 + k2 + k3)*G

A CE1 E2

(k1 + k2 + k3 + k4)

B

(k1 + k2 + k3 + k4)*G

(k1 + k2 + k3)(k1 + k2)

- k3 - k4

Extension to Multi-hop Locks

Lock(A, E1,1.3,C1,t1) Lock(E1,B,1.2,C2,t2) Lock(B,E2,1.1,C3,t3) Lock(E2,C,1,C4, t4)

(k4, C4, ZKP4)(k2, C2,ZKP2) (k3, C3,ZKP3) (k1 + k2 + k3 + k4)

k1*G (k1 + k2)*G (k1 + k2 + k3)*G

A CE1 E2

(k1 + k2 + k3 + k4)

B

(k1 + k2 + k3 + k4)*G

(k1 + k2 + k3)(k1 + k2)k1

- k2 - k3 - k4

Extension to Multi-hop Locks

Lock(A, E1,1.3,C1,t1) Lock(E1,B,1.2,C2,t2) Lock(B,E2,1.1,C3,t3) Lock(E2,C,1,C4, t4)

(k4, C4, ZKP4)(k2, C2,ZKP2) (k3, C3,ZKP3) (k1 + k2 + k3 + k4)

k1*G (k1 + k2)*G (k1 + k2 + k3)*G

A CE1 E2

(k1 + k2 + k3 + k4)

B

(k1 + k2 + k3 + k4)*G

(k1 + k2 + k3)(k1 + k2)k1

A valid key can only be
extracted from a valid key

for the right lock
(extractability property of

adaptor signatures)

- k2 - k3 - k4

Conditions still look random
(as they differ by a secret random

factor)

‣ AMHLs are suitable for cross-currency usage, even with
different primitive instantiations

✓ Inter-currency payment channels

✓ Atomic swaps

Interoperability

EC
DSA

DLOG

Watchtowers and
sleepy channels

43

Allow nodes to go offline without losing money

Handling offline nodes

‣ What if the end-point of a channel is offline?
• The other end-point can post an old state without being

punished…
‣ Watchtowers: third parties monitoring the blockchain on

behalf of offline users
‣ Challenges:

• Privacy: avoid to leak all transactions to the watchtower
• Participation and trust: pay watchtowers if they do their

job and punish them otherwise
‣ Sleepy channels: get rid of watchtowers asking parties to

be online only at predetermined time slots

Financial Crypto 2020

ACM CCS 2022

Sleepy Channels

Alice and Bob put a collateral each,
which coincides with the channel capacity

(can be configured depending on trust)

Alice: vA+c (Alice,Bob): vA+ vB+2c

Alice

Bob: vB+c

Bob c ≤ vA+ vB

Sleepy Channels

Alice: vA+c (Alice,Bob): vA+ vB+2c

Alice

Bob: vB+c

Bob c ≤ vA+ vB

We also have a way for Bob to get her money and collateral immediately
(Exit) and then for Alice to get her money (Fast Finish)

Alice can get her collateral back immediately,
for her money she has to wait until an absolute timelock (channel lifetime),

before which she can be punished if the transaction is old
(Bob has to come online only before T)

(Alice,Bob): vA+ vB+2c Alice: c

Alice

Bob
Alice: vA

Bob: vA

Upon
revocation

>T

(Alice,Bob): vA

Fast
Finish

(Alice,Bob): vB+c

Exit

Sleepy Channels

Alice: vA+c (Alice,Bob): vA+ vB+2c

Alice

Bob: vB+c

Bob c ≤ vA+ vB

(Alice,Bob): vB+c Bob: vB +c-𝜀

Alice

Bob

(Alice,Bob): 𝜀

Fast
Finish Exit

The Exit transaction is pre-signed
by Alice, so Bob can post it and

get back its money plus collateral,
minus a 𝜀 : in fact, Bob has an
interest to do it, not to lock a
collateral larger than Alice’s

funding

(Alice,Bob): vA+ vB+2c Alice: c

Alice

Bob
Alice: vA

Bob: vA

Upon
revocation

>T

(Alice,Bob): vA

Fast
Finish

(Alice,Bob): vB+c

Exit

Sleepy Channels

(Alice,Bob): vA

Alice: vA +𝜀
Alice

Bob
Fast

Finish

(Alice,Bob): 𝜀

(Alice,Bob): vB+c Bob: vB +c-𝜀

Alice

Bob

(Alice,Bob): 𝜀

Fast
Finish Exit

Alice: vA+c (Alice,Bob): vA+ vB+2c

Alice

Bob: vB+c

Bob c ≤ vA+ vB

Once Bob is done, Alice can get
her money immediately through

the Fast Finish transaction

(Alice,Bob): vA+ vB+2c Alice: c

Alice

Bob
Alice: vA

Bob: vA

Upon
revocation

>T

(Alice,Bob): vA

Fast
Finish

(Alice,Bob): vB+c

Exit

‣ Alice and Bob can update the lifetime of the channel, and also top-up its capacity, with
one on-chain transaction (similar to the Splicing protocol in Lightning Network)

‣ One can get rid of the absolute timelock for better compatibility (e.g., with currencies
without timelock scripts like Monero) through verifiable time signatures (VTS)

Extensions

Blitz

50

Make payments fast and avoid griefing attacks

Usenix Security 2021

Alice Bob Carol Dave

Step 1

pay 5

Multi-hop payments in one round: Attempt 1

Again: Alice wants to pay 5 coins to Dave, via Bob and Carol

20

Alice Bob Carol Dave

Step 1 Step 2

pay 5

Multi-hop payments in one round: Attempt 1

pay 5

Again: Alice wants to pay 5 coins to Dave, via Bob and Carol

20

Alice Bob Carol Dave

Step 1 Step 2 Step 3

pay 5

Multi-hop payments in one round: Attempt 1

pay 5 pay 5

=> Actually used in: Interledger Payments [TS15]

[TS15] S. Thomas and E. Schwartz, "A Protocol for Interledger Payments,” 2015

Again: Alice wants to pay 5 coins to Dave, via Bob and Carol

20

Alice Bob Carol Dave

Step 1

pay 5

Multi-hop payments in one round: Attempt 1

Ooops…

=> A malicious intermediary can stop the payment and effectively steal the 5 coins…

+5-5

20

Towards pay-or-revoke: Attempt 2

pay 5

after T

before T

Step 1

Alice Bob Carol Dave

21

Towards pay-or-revoke: Attempt 2

pay 5 pay 5

after T

before T before T

after T

Step 1 Step 2

Alice Bob Carol Dave

21

Towards pay-or-revoke: Attempt 2

pay 5 pay 5 pay 5

after T

before T before T before T

after T after T

Step 1 Step 2 Step 3

Alice Bob Carol Dave

21

Towards pay-or-revoke: Attempt 2

pay 5

Moments before T:
Ooops…

Bob
+5 -5

- Bob refunds in the last moment
- Others won’t have time to react

pay 5

after T after T

before T

Alice Carol Dave

21

Towards pay-or-revoke: Attempt 3

pay 5 pay 5

after T

before T before T+Δ before T+2Δ

after T+Δ after T+2Δ

Step 1 Step 2 Step 3

=> Similar to current Lightning multi-hop payments, has same scripting
requirements as Lightning, collateral time grows linearly…

pay 5

H(x) ∧ H(x) ∧ H(x) ∧

 chosen by the senderx

Alice Bob Carol Dave

22

Alice Bob Carol Dave

Pay-or-revoke paradigm

23

Alice Bob Carol Dave

Pay-or-revoke paradigm

Alice defines a timeout T, independent of the path length

Alice

23

Alice Bob Carol Dave

Pay-or-revoke paradigm

𝗍𝗑𝖾𝗋

ϵ

ϵ

ϵ

Alice creates refund enabling transaction: txer

Alice

23

Alice Bob Carol Dave

pay 5

after T

Pay-or-revoke paradigm

𝗍𝗑𝖾𝗋

ϵ

ϵ

ϵ

before T

Alice

23

Alice Bob Carol Dave

pay 5 pay 5

after T after T

Pay-or-revoke paradigm

𝗍𝗑𝖾𝗋

ϵ

ϵ

ϵ

before T before T

Alice

23

Alice Bob Carol Dave

pay 5 pay 5 pay 5

after T after T after T

Pay-or-revoke paradigm

𝗍𝗑𝖾𝗋

ϵ

ϵ

ϵ

before T before T before T

Alice

23

Alice Bob Carol Dave

pay 5 pay 5 pay 5

after T after T after T

Pay-or-revoke paradigm

𝗍𝗑𝖾𝗋

ϵ

ϵ

ϵ

before T before T before T

Alice

Confirmation: txer

23

Alice Bob Carol Dave

pay 5 pay 5 pay 5

after T after T after T

Successful payment

𝗍𝗑𝖾𝗋

ϵ

ϵ

ϵ

before T before T before T

Alice

Confirmation: txer

23

Alice Bob Carol Dave

pay 5 pay 5 pay 5

after T after T after T

Refund

𝗍𝗑𝖾𝗋

ϵ

ϵ

ϵ

before T before T before T

Alice

Confirmation: txer

23

Evaluation

24

Evaluation

‣ Blitz contract 26% smaller than Lightning contract (HTLC)

‣ Can increase number of concurrent payments per channel

24

Evaluation

‣ Blitz contract 26% smaller than Lightning contract (HTLC)

‣ Can increase number of concurrent payments per channel

24

Evaluation

‣ Blitz contract 26% smaller than Lightning contract (HTLC)

‣ Can increase number of concurrent payments per channel

State tx
BalanceA

BalanceB

HTLC

HTLC

HTLC

… } x HTLCs

Lightning payments

State tx

Blitz

Blitz

Blitz

Blitz

BalanceA

BalanceB

… } y Blitz contracts

Blitz

24

‣ Blitz contract 26% smaller than Lightning contract (HTLC)

‣ Can increase number of concurrent payments per channel

Evaluation

24

‣ Blitz contract 26% smaller than Lightning contract (HTLC)

‣ Can increase number of concurrent payments per channel

‣ Simulation on Lightning Network snapshot

‣ Random payments, some are disrupted

Evaluation

24

‣ Blitz contract 26% smaller than Lightning contract (HTLC)

‣ Can increase number of concurrent payments per channel

‣ Simulation on Lightning Network snapshot

‣ Random payments, some are disrupted

‣ Constant (Blitz) vs. staggered (Lightning) collateral

Evaluation

24

‣ Blitz contract 26% smaller than Lightning contract (HTLC)

‣ Can increase number of concurrent payments per channel

‣ Simulation on Lightning Network snapshot

‣ Random payments, some are disrupted

‣ Constant (Blitz) vs. staggered (Lightning) collateral

‣ Depending on setting, between 4x and 33x more failed  
payments in Lightning than Blitz

Evaluation

24

‣ New multi-hop payment paradigm for Payment Channel Networks

Take home: Blitz

Reduced collateral from
linear to constant

Only one round of
communication

Security against
Wormhole attack

Contract size
reduced by 26%

25

Formalized in UC framework

Nice solution, but …

Only for payments

Limitations of MHPs What we would like

26

Each payment routed
via intermediaries

Nice solution, but …

Only for payments

Limitations of MHPs What we would like

26

more fees

Each payment routed
via intermediaries

Nice solution, but …

Only for payments

Limitations of MHPs What we would like

less privacy

less reliable

26

more fees

Each payment routed
via intermediaries

Nice solution, but …

Only for payments

Limitations of MHPs What we would like

DLCs [D17], games,
betting, etc.

less privacy

less reliable

[D17] T. Dryja,”Discreet Log Contracts,” https://adiabat.github.io/dlc.pdf 26

https://adiabat.github.io/dlc.pdf

more fees

Each payment routed
via intermediaries

Nice solution, but …

Only for payments

Involve intermediaries
only for setup/closure

Limitations of MHPs What we would like

DLCs [D17], games,
betting, etc.

less privacy

less reliable

[D17] T. Dryja,”Discreet Log Contracts,” https://adiabat.github.io/dlc.pdf 26

https://adiabat.github.io/dlc.pdf

more fees

Each payment routed
via intermediaries

Nice solution, but …

Only for payments

Involve intermediaries
only for setup/closure

Limitations of MHPs What we would like

DLCs [D17], games,
betting, etc.

less privacy

less reliable

fewer fees

more privacy

more reliable

[D17] T. Dryja,”Discreet Log Contracts,” https://adiabat.github.io/dlc.pdf 26

https://adiabat.github.io/dlc.pdf

Other applications?

27

Other applications?
‣ Conditional payments, bets
‣ Stock price

27

Other applications?
‣ Conditional payments, bets
‣ Stock price
‣ Weather
‣ Sports game
‣ etc.

‣ e.g., Discreet Log Contracts  
(DLCs) [D17]

27

Other applications?
‣ Conditional payments, bets
‣ Stock price
‣ Weather
‣ Sports game
‣ etc.

‣ e.g., Discreet Log Contracts  
(DLCs) [D17]

https://cryptobriefing.com/lightning-network-counter-strike-players-earn-bitcoin/ 27

https://cryptobriefing.com/lightning-network-counter-strike-players-earn-bitcoin/

Other applications?
‣ Conditional payments, bets
‣ Stock price
‣ Weather
‣ Sports game
‣ etc.

‣ e.g., Discreet Log Contracts  
(DLCs) [D17]

‣ Works in individual channels, but not
between any two users in the network

https://cryptobriefing.com/lightning-network-counter-strike-players-earn-bitcoin/ 27[D17] T. Dryja,”Discreet Log Contracts,” https://adiabat.github.io/dlc.pdf

https://cryptobriefing.com/lightning-network-counter-strike-players-earn-bitcoin/
https://adiabat.github.io/dlc.pdf

Other applications?
‣ Conditional payments, bets
‣ Stock price
‣ Weather
‣ Sports game
‣ etc.

‣ e.g., Discreet Log Contracts  
(DLCs) [D17]

‣ Works in individual channels, but not
between any two users in the network

‣ MHP only for payments!

https://cryptobriefing.com/lightning-network-counter-strike-players-earn-bitcoin/ 27[D17] T. Dryja,”Discreet Log Contracts,” https://adiabat.github.io/dlc.pdf

https://cryptobriefing.com/lightning-network-counter-strike-players-earn-bitcoin/
https://adiabat.github.io/dlc.pdf

Other applications?
‣ Conditional payments, bets
‣ Stock price
‣ Weather
‣ Sports game
‣ etc.

‣ e.g., Discreet Log Contracts  
(DLCs) [D17]

‣ Works in individual channels, but not
between any two users in the network

‣ MHP only for payments!

https://cryptobriefing.com/lightning-network-counter-strike-players-earn-bitcoin/ 27[D17] T. Dryja,”Discreet Log Contracts,” https://adiabat.github.io/dlc.pdf

https://cryptobriefing.com/lightning-network-counter-strike-players-earn-bitcoin/
https://adiabat.github.io/dlc.pdf

Virtual Channels

79

Establish bridges over channels off-chain

NDSS 2023

Alice Bob Carol Dave

Virtual channel (VC)

29

Key idea:
- Open a virtual channel, without modifying the PCN
- VC is same as PC, but funding transaction (FT) off-chain

Alice Bob Carol Dave

Virtual channel (VC)

29

Key idea:
- Open a virtual channel, without modifying the PCN
- VC is same as PC, but funding transaction (FT) off-chain

Alice Bob Carol Dave

Virtual channel (VC)

DLC

29

Key idea:
- Open a virtual channel, without modifying the PCN
- VC is same as PC, but funding transaction (FT) off-chain

‣ Existing constructions based on recursive paradigm
‣ We present a new attack (Domino attack) on all of them, which would shut

down the Lighting Network
‣ We need a new design paradigm!

Virtual Channel (VC)

Alice Bob Carol Dave

29

Alice Bob Carol Dave

Virtual channel

𝗍𝗑𝗏𝖼

Funding transaction
of the virtual channel

Alice

Idea:
‣ Alice funds the channel with amount 5 off-chain

5 VC

30

Alice Bob Carol Dave

Virtual channel

𝗍𝗑𝗏𝖼

Funding transaction
of the virtual channel

Alice

pay 5 pay 5 pay 5

Idea:
‣ Alice funds the channel with amount 5 off-chain
‣ Set up a collateral payment of 5 coins5 VC

30

Alice Bob Carol Dave

Virtual channel

𝗍𝗑𝗏𝖼

Funding transaction
of the virtual channel

Alice

pay 5 pay 5 pay 5

Idea:
‣ Alice funds the channel with amount 5 off-chain
‣ Set up a collateral payment of 5 coins
‣ Connect funding and payment 5, s.t.,

‣ If funding is published, Alice gets collateral back
‣ Otherwise, Dave gets 5 coins through payment

?????

5 VC

30

Alice Bob Carol Dave

Virtual channel

𝗍𝗑𝗏𝖼

Funding transaction
of the virtual channel

Alice

pay 5 pay 5 pay 5

Idea:
‣ Alice funds the channel with amount 5 off-chain
‣ Set up a collateral payment of 5 coins
‣ Connect funding and payment 5, s.t.,

‣ If funding is published, Alice gets collateral back
‣ Otherwise, Dave gets 5 coins through payment

?????

‣ Posting FT, means that the VC is 
now funded on-chain -> payment channel (PC)

‣ Dave is safe

‣ Either gets money from payment

‣ Or can claim from transformed PC

Rationale

30

Alice Bob Carol Dave

Virtual channel

𝗍𝗑𝗏𝖼

Funding transaction
of the virtual channel

Alice

pay 5 pay 5 pay 5

‣ Challenge: FT and payment must be mutually exclusive!

5 VC

30

Alice Bob Carol Dave

pay 5 pay 5 pay 5

after T after T after T

Recall our Blitz payment scheme!

𝗍𝗑𝖾𝗋

ϵ

ϵ

ϵ

before T before T before T

Alice

31

Alice Bob Carol Dave

pay 5 pay 5 pay 5

after T after T after T

We can fund the VC
𝗍𝗑𝗏𝖼

ϵ

ϵ

ϵ

before T before T before T

Alice

5
Alice: 5
Dave: 0

𝖵𝖢

31

Carol Dave

pay 5

after T

Dave?
𝗍𝗑𝗏𝖼

ϵ

ϵ

ϵ

before T

Alice

5
Alice: 5
Dave: 0

𝖵𝖢

Alice Bob

pay 5 pay 5

after T after T

before T before TCase 1: Alice publishes

- Dave can claim his balance through

Case 2: Alice does not publish
- Carol cannot refund
- Dave gets 5 coins (max capacity) from Carol

𝗍𝗑𝗏𝖼

𝗍𝗑𝗏𝖼

𝗍𝗑𝗏𝖼

31

Bob Carol Dave

pay 5 pay 5

after T after T

Carol (or other intermediaries)?
𝗍𝗑𝗏𝖼

ϵ

ϵ

ϵ

before T before T

Alice

5
Alice: 5
Dave: 0

𝖵𝖢

Alice

pay 5

after T

before T makes the refund atomic
- if Bob refunds,

Carol can also refund
————————————————
- if Carol has to pay,

Bob also has to pay

𝗍𝗑𝗏𝖼

31

Alice

pay 5

after T

Alice?
𝗍𝗑𝗏𝖼

ϵ

ϵ

ϵ

before T

Alice

5
Alice: 5
Dave: 0

𝖵𝖢

Bob Carol

pay 5 pay 5

after T after T

before Tbefore T

Dave

Alice is the only one who can publish

- This allows her to refund from Bob
- Alice can claim her balance through

𝗍𝗑𝗏𝖼

𝗍𝗑𝗏𝖼

31

Alice Bob Carol Dave

pay 5 pay 5 pay 5

after T after T after T

How to use the VC
𝗍𝗑𝗏𝖼

ϵ

ϵ

ϵ

before T before T before T

Alice

5
Alice: 5
Dave: 0

𝖵𝖢

32

Alice Bob Carol Dave

pay 5 pay 5 pay 5

after T after T after T

How to use the VC
𝗍𝗑𝗏𝖼

ϵ

ϵ

ϵ

before T before T before T

Alice

5
Alice: 5
Dave: 0

𝖵𝖢

Alice and Dave update the VC by exchanging new
commitment txs and revoking the previous ones.

32

Alice Bob Carol Dave

pay 5 pay 5 pay 5

after T after T after T

How to use the VC
𝗍𝗑𝗏𝖼

ϵ

ϵ

ϵ

before T before T before T

Alice

5
Alice: 5
Dave: 0

𝖵𝖢

Alice: 3
Dave: 2

𝖵𝖢′

Alice and Dave update the VC by exchanging new
commitment txs and revoking the previous ones.

32

Alice Bob Carol Dave

pay 5 pay 5 pay 5

after T after T after T

How to use the VC
𝗍𝗑𝗏𝖼

ϵ

ϵ

ϵ

before T before T before T

Alice

5
Alice: 5
Dave: 0

𝖵𝖢

Alice: 3
Dave: 2

𝖵𝖢′

Alice: 4
Dave: 1

𝖵𝖢′ ′

Alice and Dave update the VC by exchanging new
commitment txs and revoking the previous ones.

32

Alice Bob Carol Dave

pay 5 pay 5 pay 5

after T after T after T

Close VC
𝗍𝗑𝗏𝖼

ϵ

ϵ

ϵ

before T before T before T

Alice

5
Alice: 4
Dave: 1

𝖵𝖢′ ′

33

Alice Bob Carol Dave

pay 5

after T after T after T

Close VC
𝗍𝗑𝗏𝖼

ϵ

ϵ

ϵ

before T before T before T

Alice

5
Alice: 4
Dave: 1

𝖵𝖢′ ′

pay 1
pay 5 pay 5

pay 1pay 1

33

‣ New virtual channel construction

Fair, unlimited lifetime
 and fee model

Take home: Donner

Generic scalability solution for
apps over multiple hops

Better security,
privacy & latency

Constant overhead

Formalized in UC framework
34

Payment Channel Hubs

101

Miners accept to deviate from consensus if bribed

CCS’22
S&P’21

‣ The idea is to simplify setup, routing, and payments by having a central
(untrusted) hub connecting users
‣ Similar to a bank

‣ Challenge: how do we guarantee atomicity and privacy at the same time?
‣ If the payer tells the bank whom to pay, privacy is gone (in contrast to

Ligthning, the path has just length 2)

Payment Channel Hubs (PCH)

Payment in PCH: First Attempt

(pkA, skA) (pkB, skB)

C = k*GC = k*G

(pkG, skG, k)

ASAS

The first idea, for
atomicity, is to rely on
conditional payments

and adaptor
signatures, like in

Lightning

Payment in PCH: First Attempt

(pkA, skA) (pkB, skB)

C = k*G

txG, skG

σGσG

C = k*G

(pkG, skG, k)

ASAS

Lock
The second idea, for
privacy, is to start a
conditional payment

from the payee’s
side!

Payment in PCH: First Attempt

(pkA, skA) (pkB, skB)

C = k*G

txG, skG

σGσG

C = k*G

(pkG, skG, k)

ASAS

Lock
Puzzle Promise The second idea, for

privacy, is to start a
conditional payment

from the payee’s
side!

Payment in PCH: First Attempt

(pkA, skA) (pkB, skB)

C = k*G

txG, skG

σGσG

C = k*G

(pkG, skG, k)

ASAS

txA, skA

σA σA

Lock

Lock
The second idea, for
privacy, is to start a
conditional payment

from the payee’s
side!

After the hub has
issued a puzzle

promise, Bob tells
Alice to start the

payment

Payment in PCH: First Attempt

(pkA, skA) (pkB, skB)

C = k*G

txG, skG

σGσG

C = k*G

(pkG, skG, k)

ASAS

txA, skA

σA σA

k

σσ, k

Lock

Lock

Release

The second idea, for
privacy, is to start a
conditional payment

from the payee’s
side!

After the hub has
issued a puzzle

promise, Bob tells
Alice to start the

payment

Payment in PCH: First Attempt

(pkA, skA) (pkB, skB)

C = k*G

txG, skG

σGσG

k
σ’σ’, k

C = k*G

(pkG, skG, k)

ASAS

txA, skA

σA σA

k

σσ, k

Lock

Lock

Release

Release

Share k with
Bob

The second idea, for
privacy, is to start a
conditional payment

from the payee’s
side!

After the hub has
issued a puzzle

promise, Bob tells
Alice to start the

payment

Payment in PCH: First Attempt

(pkA, skA) (pkB, skB)

C = k*G

txG, skG

σGσG

k
σ’σ’, k

C = k*G

(pkG, skG, k)

ASAS

txA, skA

σA σA

k

σσ, k

Lock

Lock

Release

Release

Puzzle Solver

Puzzle Solver

Puzzle Solver

The second idea, for
privacy, is to start a
conditional payment

from the payee’s
side!

After the hub has
issued a puzzle

promise, Bob tells
Alice to start the

payment

Payment in PCH: First Attempt

(pkA, skA) (pkB, skB)

C = k*G

txG, skG

σGσG

k
σ’σ’, k

C = k*G

(pkG, skG, k)

ASAS

txA, skA

σA σA

k

σσ, k

Lock

Lock

Release

Release

The second idea, for
privacy, is to start a
conditional payment

from the payee’s
side!

After the hub has
issued a puzzle

promise, Bob tells
Alice to start the

payment

‣ The payee does not have to tell the hub whom she wants to pay!
‣ But…the condition is the same on both signatures, so payer and payee can be linked!

Privacy Issue

(pkA, skA) (pkB, skB)

C = k*G

txG, skG

σGσG

k
σ’σ’, k

C = k*G

(pkG, skG, k)

ASAS

txA, skA

σA σA

k

σσ, k

‣ The payee does not have to tell the hub whom she wants to pay!
‣ But…the condition is the same on both signatures, so payer and payee can be linked!

Privacy Issue

(pkA, skA) (pkB, skB)

C = k*G

txG, skG

σGσG

k
σ’σ’, k

C = k*G

(pkG, skG, k)

ASAS

txA, skA

σA σA

k

σσ, k

‣ The payee does not have to tell the hub whom she wants to pay!
‣ But…the condition is the same on both signatures, so payer and payee can be linked!

Privacy Issue

(pkA, skA) (pkB, skB)

C = k*G

txG, skG

σGσG

k
σ’σ’, k

C = k*G

(pkG, skG, k)

ASAS

txA, skA

σA σA

k

σσ, k

Privacy Solution

PuzzleGen() =
Pay()

PuzzleRand() =

Pay()
PuzzleSol() =

‣ Recall in our case the puzzle is the condition C = k*G, and the solution is the secret k. Hence, the
randomized puzzle would correspond to computing C’ = r*k*G, for a random scalar r, and randomized
solution is r*k.

Privacy Solution

PuzzleGen() =
Pay()

PuzzleRand() =

Pay()
PuzzleSol() =

‣ Recall in our case the puzzle is the condition C = k*G, and the solution is the secret k. Hence, the
randomized puzzle would correspond to computing C’ = r*k*G, for a random scalar r, and randomized
solution is r*k.

‣ Gateway cannot solve the puzzle now as it does not know r. The solution is to extend the puzzle with the
encryption of the secret k under the gateway’s key.

Privacy Solution

PuzzleGen() =
Pay()

PuzzleRand() =

Pay()
PuzzleSol() =

‣ Randomizable puzzle combines the condition of adaptor signature with an encryption under
additively homomorphic encryption scheme

‣ Goals:

• Gateway creates a puzzle that can be solved using a trapdoor (e.g., secret key)

• The puzzle can be randomized to create a fresh looking version

Building Block: Randomizable Puzzle

‣ Randomizable puzzle combines the condition of adaptor signature with an encryption under
additively homomorphic encryption scheme

‣ Goals:

• Gateway creates a puzzle that can be solved using a trapdoor (e.g., secret key)

• The puzzle can be randomized to create a fresh looking version

Building Block: Randomizable Puzzle

pp, td, k r

Π = (C = k*G, c = Enc(pkG, k))
Π’ = (C’ = k*r*G, c’ = Enc(pkG, k*r))

‣ Randomizable puzzle combines the condition of adaptor signature with an encryption under
additively homomorphic encryption scheme

‣ Goals:

• Gateway creates a puzzle that can be solved using a trapdoor (e.g., secret key)

• The puzzle can be randomized to create a fresh looking version

Building Block: Randomizable Puzzle

RandPuzzle

 pp, k

Π Π, Π’
r

pp, td, k r

Π = (C = k*G, c = Enc(pkG, k))
Π’ = (C’ = k*r*G, c’ = Enc(pkG, k*r))

‣ Randomizable puzzle combines the condition of adaptor signature with an encryption under
additively homomorphic encryption scheme

‣ Goals:

• Gateway creates a puzzle that can be solved using a trapdoor (e.g., secret key)

• The puzzle can be randomized to create a fresh looking version

Building Block: Randomizable Puzzle

RandPuzzle

 pp, k

Π Π, Π’
r Generate /

Randomize

pp, td, k r

Π = (C = k*G, c = Enc(pkG, k))
Π’ = (C’ = k*r*G, c’ = Enc(pkG, k*r))

‣ Randomizable puzzle combines the condition of adaptor signature with an encryption under
additively homomorphic encryption scheme

‣ Goals:

• Gateway creates a puzzle that can be solved using a trapdoor (e.g., secret key)

• The puzzle can be randomized to create a fresh looking version

Building Block: Randomizable Puzzle

Π’, r
k

td RandPuzzle

 pp, k

Π Π, Π’
r Generate /

Randomize

pp, td, k r

Π = (C = k*G, c = Enc(pkG, k))
Π’ = (C’ = k*r*G, c’ = Enc(pkG, k*r))

‣ Randomizable puzzle combines the condition of adaptor signature with an encryption under
additively homomorphic encryption scheme

‣ Goals:

• Gateway creates a puzzle that can be solved using a trapdoor (e.g., secret key)

• The puzzle can be randomized to create a fresh looking version

Building Block: Randomizable Puzzle

Π’, r
k

td RandPuzzle

 pp, k

Π Π, Π’
r Generate /

Randomize

Solve /
Derandomize

pp, td, k r

Π = (C = k*G, c = Enc(pkG, k))
Π’ = (C’ = k*r*G, c’ = Enc(pkG, k*r))

A2L: Protocol Overview

(pkA, skA) rB

C = k*G

AS +
RandPuzzle

AS +
RandPuzzle

(pkG, skG, ppG, tdG, k)

A2L: Protocol Overview

(pkA, skA) rB

C = k*G

AS +
RandPuzzle

AS +
RandPuzzle

(pkG, skG, ppG, tdG, k)

txG, skG, ppG rB

σG, Π, Π’σG, Π
Share Π’ with
Αlice

A2L: Protocol Overview

(pkA, skA) rB

C = k*G

AS +
RandPuzzle

AS +
RandPuzzle

C’ = rB*k*G

 txA, skA, Π’

σA, Π’σA

(pkG, skG, ppG, tdG, k)

txG, skG, ppG rB

σG, Π, Π’σG, Π
Share Π’ with
Αlice

A2L: Protocol Overview

(pkA, skA) rB

C = k*G

AS +
RandPuzzle

AS +
RandPuzzle Π’, tdG, σA

σ, rB*k σ, rB*k

C’ = rB*k*G

 txA, skA, Π’

σA, Π’σA

(pkG, skG, ppG, tdG, k)

Share rB*k with
Bob

txG, skG, ppG rB

σG, Π, Π’σG, Π
Share Π’ with
Αlice

A2L: Protocol Overview

(pkA, skA) rB

C = k*G

AS +
RandPuzzle

k

σ’σ’, k

AS +
RandPuzzle Π’, tdG, σA

σ, rB*k σ, rB*k

C’ = rB*k*G

 txA, skA, Π’

σA, Π’σA

(pkG, skG, ppG, tdG, k)

Share rB*k with
Bob

txG, skG, ppG rB

σG, Π, Π’σG, Π
Share Π’ with
Αlice

A2L: Protocol Overview

(pkA, skA) rB

C = k*G

AS +
RandPuzzle

k

σ’σ’, k

AS +
RandPuzzle Π’, tdG, σA

σ, rB*k σ, rB*k

C’ = rB*k*G

 txA, skA, Π’

σA, Π’σA

(pkG, skG, ppG, tdG, k)

Share rB*k with
Bob

txG, skG, ppG rB

σG, Π, Π’σG, Π
Share Π’ with
Αlice

A2L: Protocol Overview

(pkA, skA) rB

C = k*G

AS +
RandPuzzle

k

σ’σ’, k

AS +
RandPuzzle Π’, tdG, σA

σ, rB*k σ, rB*k

C’ = rB*k*G

 txA, skA, Π’

σA, Π’σA

(pkG, skG, ppG, tdG, k)

Share rB*k with
Bob

txG, skG, ppG rB

σG, Π, Π’σG, Π
Share Π’ with
Αlice

‣ Privacy-preserving registration protocol to protect against griefing
attacks (like a user forcing the hub to lock money in a lot of puzzles…)

Griefing Protection

‣ Privacy-preserving registration protocol to protect against griefing
attacks (like a user forcing the hub to lock money in a lot of puzzles…)

Griefing Protection

‣ Privacy-preserving registration protocol to protect against griefing
attacks (like a user forcing the hub to lock money in a lot of puzzles…)

Griefing Protection

‣ Privacy-preserving registration protocol to protect against griefing
attacks (like a user forcing the hub to lock money in a lot of puzzles…)

Griefing Protection

TokenRand() =

‣ Privacy-preserving registration protocol to protect against griefing
attacks (like a user forcing the hub to lock money in a lot of puzzles…)

Griefing Protection

TokenRand() =

Puzzle Promise

Bribing Attacks
(Or Layer-2 breaks Layer-1)

109

Miners accept to deviate from consensus if bribed

What if miners are bribed?

Alice Bob

‣ Alice first has 7 coins…

Blockchain

(Alice,Bob): 10 Bob: 3

Alice: 7

Alice

Bob

?? Bob: 7
∨ >

What if miners are bribed?

Alice Bob

(Alice,Bob): 10 Alice: 4

Bob: 6Bob??
Alice: 6

∨
Alice

>

‣ Then she pays 3 to Bob and reveals the old key

Blockchain

What if miners are bribed?

Alice Bob

‣ Now Alice first bribes the miner…

Blockchain

2 coins

What if miners are bribed?

Alice Bob

‣ And then posts the old channel balance on-chain

(Alice,Bob): 10 Bob: 3

Alice: 7

Alice

Bob

Bob: 7
∨

Blockchain

>

What if miners are bribed?

Alice Bob

‣ Bob tries to punish Alice before the timeout, but the miners do not post the
transaction on chain

(Alice,Bob): 10 Bob: 3

Alice: 7

Alice

Bob

Bob: 7
∨ >

Blockchain

“I claim 7 coins with “

What if miners are bribed?

Alice Bob

‣ After the timeout, Alice gets 7 coins.

Blockchain
“I claim 7 coins“

(Alice,Bob): 10 Bob: 3

Alice: 7

Alice

Bob

Bob: 7
∨ >

‣ Currently covers just HTLCs (not payment channels)
‣ Mad-HTCL:
‣ Incentivize miners to punish misbehaving users
‣ Game-theoretic security against passive miner

strategies
‣ HE-HTLC
‣ Game-theoretic security against active miner

strategies

State-of-the-art

IEEE S&P 2021

NDSS 2023

‣ First game-theoretically secure payment channel construction against byzantine adversaries and rational miners
‣ Supports offline users without requiring watchtowers nor limited channel lifetime

CRAB (Channel Resistant Against Bribery)
ACM CCS 2024

Alice Bob
(Alice,Bob): vA+vB+2c Bob: c

(Alice,Bob): c

Alice

Bob

?? Miners: c
∨ >

(Alice,Bob): vA+vB

Bob: vA+vB

∨ >

Alice and Bob put collateral c each
(channel capacity for security against
rational parties, or twice as much for
security against byzantine parties)

(Alice,Bob): vA+vB+c Bob: vB

Alice: vA+c

Alice

Bob

??

‣ First game-theoretically secure payment channel construction against byzantine adversaries and rational miners
‣ Supports offline users without requiring watchtowers nor limited channel lifetime

CRAB (Channel Resistant Against Bribery)
ACM CCS 2024

Alice Bob
(Alice,Bob): vA+vB+2c Bob: c

(Alice,Bob): c

Alice

Bob

?? Miners: c
∨ >

(Alice,Bob): vA+vB

Bob: vA+vB

∨ >

(Alice,Bob): vA+vB+c Bob: vB

Alice: vA+c

Alice

Bob

??

Bob gets his collateral anyway

‣ First game-theoretically secure payment channel construction against byzantine adversaries and rational miners
‣ Supports offline users without requiring watchtowers nor limited channel lifetime

CRAB (Channel Resistant Against Bribery)
ACM CCS 2024

Alice Bob
(Alice,Bob): vA+vB+2c Bob: c

(Alice,Bob): c

Alice

Bob

?? Miners: c
∨ >

(Alice,Bob): vA+vB

Bob: vA+vB

∨ >

(Alice,Bob): vA+vB+c Bob: vB

Alice: vA+c

Alice

Bob

??

If the state is old, then miners
get the collateral so they will
post the transaction on-chain,
otherwise the collateral goes
to the next transaction

‣ First game-theoretically secure payment channel construction against byzantine adversaries and rational miners
‣ Supports offline users without requiring watchtowers nor limited channel lifetime

CRAB (Channel Resistant Against Bribery)
ACM CCS 2024

Alice Bob
(Alice,Bob): vA+vB+2c Bob: c

(Alice,Bob): c

Alice

Bob

?? Miners: c
∨ >

(Alice,Bob): vA+vB

Bob: vA+vB

∨ >

(Alice,Bob): vA+vB+c Bob: vB

Alice: vA+c

Alice

Bob

??

If the state is old, Bob gets all
channel balance, otherwise
the balance goes to the next
transaction

‣ First game-theoretically secure payment channel construction against byzantine adversaries and rational miners
‣ Supports offline users without requiring watchtowers nor limited channel lifetime

CRAB (Channel Resistant Against Bribery)
ACM CCS 2024

Alice Bob
(Alice,Bob): vA+vB+2c Bob: c

(Alice,Bob): c

Alice

Bob

?? Miners: c
∨ >

(Alice,Bob): vA+vB

Bob: vA+vB

∨ >

(Alice,Bob): vA+vB+c Bob: vB

Alice: vA+c

Alice

Bob

??
The channel balance is
shared as expected and Alice
also gets back her collateral

Research Questions

‣ Characterize the class of functions
expressable in Bitcoin scripting

‣ Characterize the gains in
expressiveness that opcodes
currently discussed would offer (e.g.,
different forms of covenance)

‣ Provide semantic foundations,
verification tools, etc.

Research Questions for PL Folks

ACM CCS 2018

‣ Which properties would we like to
achieve via Layer-2 protocols?
‣ Privacy, scalability, accountability,

what more?
‣ Which classes of protocols can we

design to achieve them?
‣ Payment channel networks, rollups,

what else?

Research Questions for Distributed and Crypto Folks

Financial Crypto 2020

‣ Lightning Network assumes a public
topology to compute the route to the
receiver (scalability and privacy issues)

‣ How can we route messages over a
private topology?

‣ Can we characterize the privacy properties
(e.g., like we do in Tor)?

‣ How can we make routing more efficient
and resiliant?

Research Questions for Network Folks

NDSS 2018

NSDI 2020

IFIP Networking 2021

‣ How can we leverage the on-chain footprint to
‣ Break user anonymity, both on-chain

(Layer-1) and off-chain (Layer-2)?
‣ Track payments and identify cybercrime

activities?
‣ Quantify the guarantees offered by privacy-

preserving protocols?
‣ Understand and optimize Miner Extractable

Value algorithms?

Research Questions for ML and Measurement Folks
IMC 2013

Financial Cryptography 2021

ACM AFT 2022

Usenix Security 2022

Usenix Security 2023

‣ Design Layer-2 protocols that are game-
theoretic secure against rational miners

‣ Game-theoretically secure the composition of
‣ Layer-1 and Layer-2
‣ Layer-2 applications

Research Questions for Game-Theory Folks

NDSS 2023

IEEE CSF 2023

 ERC Advanced Grant
 BlockSec

 Formal Methods for Secure Blockchain-Oriented Programming
 2024-2029

124

Interested in an
internship, PhD, PostDoc, research visit, talk?

Take Home

Scaling blockchains and making them
more secure and privacy-preserving is a

grand challenge that requires
groundbreaking, interdisciplinary research

(PL, game theory, networks, ML,
cryptography, distributed systems…)

