
Authenticated encryption: state-of-the-art and
beyond

Joan Daemen, Radboud University, NL

Summer School on real-world crypto and privacy,

Monday June 3, 2024, Vodice, Croatia

1/49

What do we want to do?

Protect the communication between Alice and Bob over an open channel

that is controlled by a potentially very resourceful adversary Eve

• Confidentiality of the content of messages

• Authentication of the communication

• Alice can check that any received message was effectively sent by Bob

• . . . and that it is not a replay of an old message by Eve

• . . . and that Bob sent it recently: freshness

We assume that Alice and Bob share a secret key K that Eve does not know

2/49

Confidentiality: encryption with the one-time pad (OTP)

Bob enciphers: C ← M ⊕ K

M = 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0

K = 0 1 0 1 1 1 0 0 0 1 1 0 1 1 0
⊕

C = 1 0 1 0 1 1 1 0 1 0 1 0 1 0 0

Alice deciphers: M ← C ⊕ K

C = 1 0 1 0 1 1 1 0 1 0 1 0 1 0 0

K = 0 1 0 1 1 1 0 0 0 1 1 0 1 1 0
⊕

M = 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0

3/49

Unconditional security of the one-time pad

Claude Shannon

Encryption is 100 % secure if ciphertext C gives no

information on content of plaintext P

∀p : Pr (P = p|C) = Pr (P = p)

Claude Shannon proved the security of OTP

• Unconditional: ∀ Eve

• Problem: key K must be as long as total

amount of plaintext

4/49

From one-time pad to practical stream encryption

Stream encryption: bitwise add to the plaintext P a keystream of same length Z

C ← P + Z

Stream encryption made practical: generate Z from a short key K and a diversifier D

K -

D -
Stream cipher - z1z2z3 · · ·

Z ← SCK (D) or for short C ← P + SCK (D)

Diversifier is there to generate multiple keystreams Z from a single key K

Stream encryption is secure if D is unique per message and stream cipher is secure
5/49

Stream encryption: beware of diversifier re-use!

• Say we use same diversifier D to encipher M1 and M2

• This gives same keystream Z = SCK (D) for both messages, so:

C1 = M1 ⊕ Z and C2 = M2 ⊕ Z

• Eve can compute difference between M1 and M2 from ciphertexts:

C1 ⊕ C2 = M1 ⊕ Z ⊕M2 ⊕ Z = M1 ⊕M2

• (partial) knowledge of M1 gives (partial) knowledge of M2

Nonce

Diversifier D must be unique per message. We call this a nonce: number used once

6/49

When is a stream cipher secure?

K -

D -
stream cipher - Z

• For an adversary that knows the algorithm but not the key K

• Z = SCK (D) must be hard to distinguish from a random sequence

• for values of D freely chosen by the adversary

• You cannot prove this is satisfied

• you can try to demonstrate this is not satisfied using cryptanalysis

• security assurance of a function grows with amount of cryptanalysis it had

• . . . as long as this does not result in a break

Concrete design requirements: Diffusion and Confusion (C. Shannon)

All bits of Z = SCK (D) must be a complicated function of all bits of D en K

7/49

Authenticating a message using a MAC function

Encryption does not guarantee that Alice can detect message tampering by Eve

This can be done by appending an authentication code T ← MACK (M)

• Bob computes over the message M an authentication code T (aka tag)

• M can be long, T is short, e.g., 16 bytes

• computation of T requires a secret key K

• with key it is easy to compute T , without key not

• Bob sends (M,T) to Alice

• Alice uses her key K to compute T ′ from M

• if T = T ′, she accepts the message as coming from Bob

• A forgery is a pair (M,T) not coming from Bob, accepted by Alice

Often Alice wants to authenticate more, requiring active checks from her part

8/49

Authenticating freshness

Alice wants to authenticate that the message from Bob is recent

Bob Alice

have: K K
Bob−−−−−−→ R

$← {0, 1}n
R←−−−−

T ← MACK (R;M)
M,T−−−−−−→ T

?
= MACK (R;M)

Requires 3 passes:

• Bob announces he has a message

• Alice provides an unpredictable challenge R

• Bob computes tag and sends (M,T)

9/49

Protecting against replay

Bob Alice

have: K ,NB K ,NA

NB ← NB + 1

T ← MACK (NB ;M)
Bob,NB ,M,T−−−−−−−−→ NB

?
> NA

T
?
= MACK (NB ;M)

NA ← NB

NX : counter keeping track of the number of protocol runs started by Bob

• Requires only a single pass

• Stateful: Bob and must keep track of counters N

• Prevents replay but not stalling of messages by Eve

Note: this protocol allows holes in the counter sequence, variants exist

10/49

Intermezzo: finite field basics

A field is a set S with two operations: addition + and multiplication ·

• (S ,+) forms a group

• Associative, neutral element 0 and each element a has an inverse −a
• (S \ {0}, ·) forms a group

• Associative, neutral element 1 and each element a has an inverse a−1

• Distributive: a(b + c) = ab + ac and (a+ b)c = ac + bc

• If S is finite we speak of a finite field

• There exists one finite field for any #S = pn with p a prime. Special cases:

• Prime fields Fp: addition and multiplication modulo p

• Binary fields F2n : XOR and “carryless” modular multiplication

A polynomial of degree n in a finite field has at most n roots

11/49

Polynomial authentication codes

This type of code requires encoding message and keys as elements of finite field

• Message encoded as a sequence of elements of a finite field S : M = m1,m2, . . .mℓ

• Key K consists of a pair of subkeys, also in the finite field S : K = z , k .

Tag computation:

T ← z +
ℓ∑

i=1

mik
i

This is

• secure if a fresh random key z , k is used for every message

• not secure if a key z , k is used for more than a single message

12/49

Re-use of keys for polynomial authentication codes

Consider two messages with length 1, m and m′, and their tags T and T ′

T = z +mk and T ′ = z +m′k

Subtracting gives

T − T ′ = (m −m′)k

Solving for k :

k =
T − T ′

m −m′

And then determine z = T −mk

Re-use leaks the key allowing arbitrary forgery!

13/49

Security in case of unique key per message

Say Eve observes a valid pair (M,T)

If fresh keys z , k for each message, probability of successful forgery is ≤ ℓ/#S

• successful forgery (M ′,T ′) would satisfy T ′ = z +
∑ℓ

i=1m
′
ik

i

• subtraction from T = z +
∑ℓ

i=1mik
i gives

T − T ′ +
ℓ∑

i=1

(m′
i −m′

i)k
i = 0

Polynomial equation of degree ℓ in the unknown k , so at most ℓ solutions

For any choice of (M ′,T ′) the forgery is successful for at most ℓ out of #S keys k

14/49

MAC functions made practical

Problem: each message consumes 2 finite field elements

Solution 1: Carter-Wegman (example for F2n)

• Generate z with a stream cipher: z ← 0n + SCK (D)

• Requires D to be a nonce per message

• Re-use of D leaks k

• Secure if D is a nonce and stream cipher is secure

Solution 2: Dedicated MAC function T ← MACK (M)

K -

M - MAC function - T

15/49

When is a MAC function secure?

K -

M - MAC function - T

• For an adversary that does not know the key K

• T = MACK (M) must be hard to distinguish from a random sequence

• for values of M freely chosen by the adversary

• You cannot prove this is satisfied

• But you can claim security, hope it is attacked and pray it is not broken

Concrete design requirements: Diffusion and Confusion (C. Shannon)

All bits of T = MACK (M) must be a complicated function of all bits of M en K

16/49

Example of encryption combined with message sequence authentication

Bob Alice

K ,N K ,N ′

N ← N + 1

CN ← MN ⊕ SCK (N)

T ← MACK (N;CN)
Bob,N,CN ,T−−−−−−−→ N

?
= N ′ + 1

T
?
= MACK (N;CN)

N ′ ← N

MN ← CN ⊕ SCK (N)

• N serves two purposes

• encryption nonce incremented by Bob for each message

• replay/omission prevention checked by Alice per message

• This protocol: no freshness and tolerates no message loss

17/49

But how do we build a secure stream cipher or MAC function?

18/49

Rijndael/AES

19/49

AES is a block cipher

• BK : encryption of a 16-byte plaintext P to an 16-byte ciphertext C

• Computation of C = BK (P) of P = B−1
K (C) must be

• efficient for someone who knows the key K

• . . . infeasible otherwise: BK must look like a random permutation

• With some tinkering this can be made into a stream cipher and a MAC function:

modes of use

20/49

AES in a nutshell

• 10 rounds for 128-bit key, 12 for 192-bit key and 14 for 256-bit key

• Selling point: table-lookup implementatie costs only 16 TLU en XORs per round.

• Best attack breaks reduced-round version of 7 rounds (out of 10)

21/49

Stream encryption with a block cipher: Counter mode

BK BK BK BK· · ·

D∥⟨1⟩r D∥⟨2⟩r D∥⟨3⟩r D∥⟨ℓ⟩r· · ·

P1 P2 P3 Pℓ

C1 C2 C3 Cℓ· · ·

• You can prove this is reasonably secure if BK behaves like a random permutation

• The diversifier D must be a nonce: unique per message

• Security breaks down after 2n/2 blocks: birthday bound

22/49

MAC function with a block cipher: CBC-MAC(-like)

BK BK BK BK ′· · ·

m1 m2 m3 mℓ∥10∗· · ·

T

• You can prove this is reasonably secure if BK behaves like a random permutation

• Also here security breaks at the birthday bound: after 2n/2 blocks

23/49

Authenticated encryption

Authenticated encryption (modern definition)

-AD
-P

K

?

Wrap
- C

-AD
-C

K

?

Unwrap
-P or ⊥

• Wrap: encryption of (var. length) plaintext P to ciphertext C under parameters:

• (variable-length) associated data AD

• secret key K

• Unwrap: decryption of C to P includes authentication

• returns error ⊥ if C is not a valid cryptogram

• C contains redundancy: |C | > |P|
• Wrap and unwrap are deterministic

24/49

Authenticated encryption: security goal

-AD
-P

K

?

Wrap
- C

-AD
-C

K

?

Unwrap
-P or ⊥

• A scheme is secure if it is hard to distinguish from an ideal scheme

• Ideal scheme: the Jammin’ cipher [Bacuieti et al., Asiacrypt ’22]

• ciphertexts C are random and independent per input (K ,AD,P)

• unwrap rejects all invalid ciphertexts C

• Limitation: encryption is deterministic

• leakage: equal inputs (AD,P) give equal ciphertexts C

• countermeasure: include nonce in AD

• Distinguishability may be conditional on AD uniqueness

25/49

Dominant AE standard: AES in Galois Counter Mode (GCM) [NIST SP800-38D]

26/49

Issues of AES-GCM

Combination of counter mode AES with Carter-Wegman polynomial MAC over F2128

• In case the diversifier (called IV) repeats:

• difference of plaintexts leaks

• authentication key H leaks, so forgery becomes easy

• Diversifier is limited to 96 bits

• Taking a short tag may eventually leak authentication key H

• AES software implementations are vulnerable to cache attacks!

• efficient AES code makes use of table-lookups (TLU)

• presence/absence of table in cache makes TLU variable-time

• can be used to recover the key [Page 2002], etc. etc . . .

Later Intel and others added AES and GHASH instructions in their CPUs

27/49

ChaCha20-Poly1305 by Dan Bernstein

figure by Morz25
28/49

ChaCha20 explained

Initial state:

C C C C

K K K K

K K K K

Ctr D D D

Quarter round:

figure T. Arcieri

Odd round:

a a a a

b b b b

c c c c

d d d d

Even round:

a a a a

b b b b

c c c c

d d d d

Best attack breaks reduced-round version of 5/6 rounds (out of 20)
29/49

On ChaCha20-Poly1305

• No table-lookups so not vulnerable to cache attacks

• ChaCha20 is an Addition-Rotation-XOR (ARX) cipher

• security is based on the mess these operations create when combined

• very efficient in software, less suited for hardware implementation

• hard to protect against side channel attacks exploiting measurement of power

consumption or electromagnetic emanations

• Poly1305 is a polynomial MAC function in Fp with p = 2130 − 5

• In case the diversifier (called N) repeats:

• difference of plaintexts leaks

• authentication key r , s leaks, so forgery with same N becomes easy

• Diversifier is limited to 96 bits

ChaCha20-Poly1305 is embraced by Big Tech and the cool crowd!

30/49

Deck functions and modes

Deck function based crypto

Refactoring of symmetric crypto, with a three-layer approach:

1 Build permutation f

2 Construct a new kind of primitive FK on top of it

• input and output of variable length (preferably arbitrary length)

• output of FK (X) should look as a sequence of random bits

• assurance: based on public scrutiny by cryptanalysts

3 Build modes on top of this function that are proven secure if FK is secure

31/49

Definition of a deck function

A deck function FK

Z = 0n + FK

(
X (1); . . . ;X (m)

)
≪ q

• Input: sequence of strings X (1); . . . ;X (m)

• Output: potentially infinite output

• pseudo-random function of the input

• taking n bits starting from offset q

doubly extendable cryptographic keyed function

32/49

Stream encryption: short input, long output

nonce

plaintext = ciphertext

C ← P + FK (N)

33/49

MAC computation: long input, short output

plaintext

plaintext

T ← 0t + FK (P)

34/49

Nonce-based authenticated encryption

nonce

plaintext = ciphertext

ciphertext

X ← P + FK (AD)

T ← 0t + FK (AD;X)

C ← X ||T

35/49

AE without nonce requirement: variant of SIV [Rogaway, Shrimpton Eurocrypt ’06]

T ← 0t + FK (AD;P||0)
X ← P + FK (AD;T ||1)
C ← X ||T

36/49

Wide block cipher with double-decker, as Deck-WBC in [KT, eprint 2016/1188]

Encipher P ∈ Z∗
2 with K and tweak

W ∈ Z∗
2

(L,R) ← split(P)

R0 ← R0 + HK (L||0)
L ← L + GK (W ;R||1)
R ← R + GK (W ; L||0)
L0 ← L0 + HK (R||1)
C ← L || R

return ciphertext C of length |P|

Pʹleft Pʹright

W

HK(... ° 0)

GK(... ° 1)

GK(... ° 0)

HK(... ° 1)

Cleft Cright

Security bound proven in [Gunsing et al, ToSC 2019/4]

37/49

Deck-WBC-AE: robust AE [Hoang, Krovetz and Rogaway, Eurocrypt ’15]

P 0t C

Deck-WBC Deck-WBC-1

K

A

C P 0t?

38/49

. . . and much more

• Support for sessions

• allow intermediate tags for online operation

• allows integrated authentication of bidirectional communication

• Trade-off of efficiency vs robustness against misuse

• Support for committing authenticated encryption

• . . . and all their combinations

See

“Jammin’ on the deck” [Bacuieti et al., Asiacrypt ’22]

“Committing authenticated encryption based on SHAKE” [Eprint ’23/1494]

39/49

Building deck functions, serially

Sponge [Keccak Team, Ecrypt 2008]

input output

outer
inner

0

0

r

c

f f f f f f

absorbing squeezing

Taking K as first part of input gives something close to a deck function

40/49

Keyed duplex object

K

iv

f

Z

f

σ Z

f

σ Z

…

E.g., Strobe [Hamburg 2017], Xoodyak, Subterranean, ASCON [NIST lwc]

• Deck function with length-restricted input and output strings

• Restrictions can be circumvented with a thin input-encoding layer on top

• Cryptanalysis: plug in (round-reduced) permutation and try to break

41/49

Parallel deck functions

How to build a parallelizable deck function?

by Barilla Food Service

42/49

Farfalle: early attempt [KT 2014-2016]

0k f

M0

1k f

M1

ik f

Mi

… …

f

k

0 Z0

f

k

1 Z1

f

k

j Zj

43/49

Farfalle as published in [Keccak Team + Seth Hoffert, ToSC 2018]

pc

c

m0

k

pc

c

m1

k

…

pc

i c

mi

k

pe
e

z0

k′

pe
e

z1

k′

…

pej
e

zj

k′

K∥10∗ pb

i+2
c

pd

• Derivation of mask k from user key K using pb

• Linear input mask rolling and pc to prevent collisions in state at input of pd

• Non-linear state rolling, pe and mask against state retrieval from output

• Input-output attacks have to deal with pe ◦ pd ◦ pc
44/49

Xoodoo and Xoofff

The permutation Xoodoo [Keccak team with Seth Hoffert, ToSC 2018]

• Inspired by 384-bit permutation Gimli [Bernstein et al., CHES 2017]

• compact on low-end: fits registers of ARM Cortex M3/M4

• fast on high-end: suitable for SIMD

• not suited for Farfalle

• Xoodoo

• 384-bit permutation Keccak philosophy ported to Gimli shape

• main purpose: usage in Farfalle: Xoofff

• efficient on wide range of platforms

45/49

Xoodoo + Farfalle = Xoofff

fm0

k

fm1

k

…

f

i

mi

k

f z0

k′

f z1

k′

…

fj zj

k′

K∥10∗ f

i+2

f

• f = Xoodoo[6]

• Input mask rolling with LFSR, state rolling with NLFSR

46/49

Xoofff performance

ARM Cortex Intel

M0 M3 Skylake SkylakeX

mask derivation 1985 781 168 74 cycles

less than 48 bytes 5658 2568 504 358 cycles

MAC computation use case:

long inputs 26.0 8.8 0.90 0.40 cycles/byte

Stream encryption use case:

long outputs 25.1 8.1 0.94 0.51 cycles/byte

AES-128 counter mode 121.4 33.2 0.65 0.65 cycles/byte

47/49

Conclusions

• There are many AE schemes

• In classical schemes

• encryption usually done with block ciphers

• tag computation usually done with polynomial hashes

• AES-GCM and ChaCha20-Poly1305 dominate

• Secure deck functions are very powerful primitives

• nonce-based (session) AE

• SIV-based (session) AE

• Wide block encryption

• Deck functions can be built from permutations

• compact: keyed duplex

• computationally efficient: Farfalle

• Using Xoodoo already gives very competitive deck function Xoofff

48/49

Thanks for your attention!

49/49

	Authenticated encryption
	Deck functions and modes
	Building deck functions, serially
	Parallel deck functions
	Xoodoo and Xoofff

