Radboud University %

TopNsS

Authenticated encryption: state-of-the-art and

beyond

Joan Daemen, Radboud University, NL

Summer School on real-world crypto and privacy,
Monday June 3, 2024, Vodice, Croatia

1/49

7N
-
=7
ESCADA

What do we want to do?

Protect the communication between Alice and Bob over an open channel
that is controlled by a potentially very resourceful adversary Eve

e Confidentiality of the content of messages
® Authentication of the communication

® Alice can check that any received message was effectively sent by Bob
® . .and that it is not a replay of an old message by Eve
® . .and that Bob sent it recently: freshness

We assume that Alice and Bob share a secret key K that Eve does not know

2/49

Confidentiality: encryption with the one-time pad (OTP)

Bob enciphers: C +— M & K
M= 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0
K=o0 1011 100 0 1 10 110 &

3/49

Unconditional security of the one-time pad

Encryption is 100 % secure if ciphertext C gives no
information on content of plaintext P

Vp:Pr(P=p|C)=Pr(P=p)

Claude Shannon proved the security of OTP
e Unconditional: V Eve

® Problem: key K must be as long as total
amount of plaintext

Claude Shannon

4/49

From one-time pad to practical stream encryption

Stream encryption: bitwise add to the plaintext P a keystream of same length Z

C—~P+Z7

Stream encryption made practical: generate Z from a short key K and a diversifier D

K —»

B Stream cipher — 212023 -
—

Z < SCk(D) or for short C < P+ SCk(D)

Diversifier is there to generate multiple keystreams Z from a single key K

Stream encryption is secure if D is unique per message and stream cipher is secure
5/49

Stream encryption: beware of diversifier re-use!

® Say we use same diversifier D to encipher My and M,

® This gives same keystream Z = SCk(D) for both messages, so:
G=M®dZand G=Md Z
® Eve can compute difference between My and M, from ciphertexts:
GoeG=MSZOMOZ=M &M

® (partial) knowledge of M; gives (partial) knowledge of M,

Nonce
Diversifier D must be unique per message. We call this a nonce: number used once

6/49

When is a stream cipher secure?

K —
D —

stream cipher — 7

® For an adversary that knows the algorithm but not the key K
® Z = SCk(D) must be hard to distinguish from a random sequence
® for values of D freely chosen by the adversary
® You cannot prove this is satisfied
® you can try to demonstrate this is not satisfied using cryptanalysis
® security assurance of a function grows with amount of cryptanalysis it had

® . .as long as this does not result in a break

Concrete design requirements: Diffusion and Confusion (C. Shannon)
All bits of Z = SCk (D) must be a complicated function of all bits of D en K

7/49

Authenticating a message using a MAC function

Encryption does not guarantee that Alice can detect message tampering by Eve

This can be done by appending an authentication code T <— MACk(M)

® Bob computes over the message M an authentication code T (aka tag)
® M can be long, T is short, e.g., 16 bytes
® computation of T requires a secret key K
® with key it is easy to compute T, without key not
® Bob sends (M, T) to Alice
® Alice uses her key K to compute T’ from M

® if T = T’, she accepts the message as coming from Bob

® A forgery is a pair (M, T) not coming from Bob, accepted by Alice

Often Alice wants to authenticate more, requiring active checks from her part
8/49

Authenticating freshness

Alice wants to authenticate that the message from Bob is recent

Bob Alice
have: K K
Bob $
—— R<&{0,1}7
LR

T« MACK(R; M) —MT T2 MACK(R; M)

Requires 3 passes:

® Bob announces he has a message
® Alice provides an unpredictable challenge R
® Bob computes tag and sends (M, T)

9/49

Protecting against replay

Bob Alice
have: K, Ng K, Np
Ng + Ng +1
T « MACk(Ng; M) EBNaMT w2,
T £ MACk(Ng; M)
Ny NB

Ny : counter keeping track of the number of protocol runs started by Bob

® Requires only a single pass
® Stateful: Bob and must keep track of counters NV

® Prevents replay but not stalling of messages by Eve

Note: this protocol allows holes in the counter sequence, variants exist
10/49

Intermezzo: finite field basics

A field is a set S with two operations: addition + and multiplication -

® (S,+) forms a group
® Associative, neutral element 0 and each element a has an inverse —a
(5\{0},-) forms a group

® Associative, neutral element 1 and each element a has an inverse a~

1

e Distributive: a(b+ ¢) = ab+ ac and (a + b)c = ac + bc
e |f S is finite we speak of a finite field
® There exists one finite field for any #S = p"” with p a prime. Special cases:

® Prime fields IF,: addition and multiplication modulo p
® Binary fields F2n: XOR and “carryless” modular multiplication

A polynomial of degree n in a finite field has at most n roots
11/49

Polynomial authentication codes

This type of code requires encoding message and keys as elements of finite field

® Message encoded as a sequence of elements of a finite field S: M = my, my, ... my

e Key K consists of a pair of subkeys, also in the finite field S: K = z, k.

Tag computation:
¢
T+ z+ Z m;k'
i=1
This is
® secure if a fresh random key z, k is used for every message
® not secure if a key z, k is used for more than a single message

12/49

Re-use of keys for polynomial authentication codes

Consider two messages with length 1, m and m’, and their tags T and T’
T=z+mk and T =z4+nmk

Subtracting gives

Solving for k:

And then determine z = T — mk

Re-use leaks the key allowing arbitrary forgery!
13/49

Security in case of unique key per message

Say Eve observes a valid pair (M, T)
If fresh keys z, k for each message, probability of successful forgery is < ¢/#S

® successful forgery (M’, T') would satisfy T' = z + Zle m'k

e subtraction from T =z 4+ S5_, m;k’ gives

)4
T =T+ (m—m)k =0
i=1

Polynomial equation of degree ¢ in the unknown k, so at most ¢ solutions

For any choice of (M, T") the forgery is successful for at most £ out of #S keys k

14/49

MAC functions made practical

Problem: each message consumes 2 finite field elements
Solution 1: Carter-Wegman (example for Fan)
® Generate z with a stream cipher: z < 0" + SCk(D)
® Requires D to be a nonce per message

® Re-use of D leaks k

® Secure if D is a nonce and stream cipher is secure

Solution 2: Dedicated MAC function T <— MACk (M)

K o

M | MAC function — T

15/49

When is a MAC function secure?

K o
M o

MAC function —= T

® For an adversary that does not know the key K

® T = MACk(M) must be hard to distinguish from a random sequence
® for values of M freely chosen by the adversary

® You cannot prove this is satisfied

® But you can claim security, hope it is attacked and pray it is not broken

Concrete design requirements: Diffusion and Confusion (C. Shannon)
All bits of T = MACk (M) must be a complicated function of all bits of M en K

16/49

Example of encryption combined with message sequence authentication

Bob Alice
K,N K, N
N+ N+1

Cn < My & SCk(N)

T < MACK(N; Cy) Ml Xy
T £ MACK(N; Cy)
N «— N

My < Cy & SCk(N)

® [N serves two purposes

® encryption nonce incremented by Bob for each message
® replay/omission prevention checked by Alice per message

® This protocol: no freshness and tolerates no message loss

17/49

But how do we build a secure stream cipher or MAC function?

18/49

AES is a block cipher

N & [«
~
=

® By: encryption of a 16-byte plaintext P to an 16-byte ciphertext C
e Computation of C = Bk (P) of P = B}(C) must be
® cfficient for someone who knows the key K
® . infeasible otherwise: Bx must look like a random permutation
® \With some tinkering this can be made into a stream cipher and a MAC function:
modes of use

20/49

AES in a nutshell

Key Schedule

® 10 rounds for 128-bit key, 12 for 192-bit key and 14 for 256-bit key
® Selling point: table-lookup implementatie costs only 16 TLU en XORs per round.
® Best attack breaks reduced-round version of 7 rounds (out of 10)

21/49

Stream encryption with a block cipher: Counter

D|[(1) D|[(2) DI[(3) DI|(€)r
BK BK BK BK
Py ﬂé P> ﬂ6‘3 P3 %5 Py %g
G G G G

® You can prove this is reasonably secure if Bx behaves like a random permutation
® The diversifier D must be a nonce: unique per message

e Security breaks down after 2"/2 blocks: birthday bound

22/49

MAC function with a block cipher: CBC-MAC(-like)

m my ms3 ce mngO*
S o ——
A, Y Y
Bk Bk Bk Bk
[[[— l
T

® You can prove this is reasonably secure if Bk behaves like a random permutation

e Also here security breaks at the birthday bound: after 2"/2 blocks

23/49

Authenticated encryption

Authenticated encryption (modern definition)

K K
AD = Wrap AD = Unwrap
P — — C C —r —P or L

® Wrap: encryption of (var. length) plaintext P to ciphertext C under parameters:

® (variable-length) associated data AD
® secret key K

® Unwrap: decryption of C to P includes authentication

® returns error L if C is not a valid cryptogram
® C contains redundancy: |C| > |P|

® \Wrap and unwrap are deterministic

24/49

Authenticated encryption: security goal

K
l
APD : Wrap

_>C

K
AD = Unwrap
Cc —~

—P or L

A scheme is secure if it is hard to distinguish from an ideal scheme

Ideal scheme: the Jammin’ cipher [Bacuieti et al., Asiacrypt '22]

® ciphertexts C are random and independent per input (K, AD, P)

® unwrap rejects all invalid ciphertexts C

Limitation: encryption is deterministic

® |eakage: equal inputs (AD, P) give equal ciphertexts C

® countermeasure: include nonce in AD

Distinguishability may be conditional on AD uniqueness

25/49

Dominant AE standard: AES in Galois Counter Mode (GCM) [NIST SP800-38D]

L » |
|

] e | [oem,
|

| A | o] c | o | | ten(aes | | en(©))e |
|

|

|
|)

26/49

Issues of AES-GCM

Combination of counter mode AES with Carter-Wegman polynomial MAC over Fyis

® In case the diversifier (called /V) repeats:
e difference of plaintexts leaks
® authentication key H leaks, so forgery becomes easy
® Diversifier is limited to 96 bits
® Taking a short tag may eventually leak authentication key H
e AES software implementations are vulnerable to cache attacks!

e cfficient AES code makes use of table-lookups (TLU)
® presence/absence of table in cache makes TLU variable-time
® can be used to recover the key [Page 2002], etc. etc ...

Later Intel and others added AES and GHASH instructions in their CPUs
27/49

ChaCha20-Poly1305 by Dan Bernstein

Associated Data Key Nonce Plaintext
AD K N M
| |
|

N
Counter=0 }: Counter=1 Counter=¢
0

: ! b }
[cobtock | [coblock | [0Cblock
5 ! |

E |256 bits | :: | Keystream '—-»_3

Poly1305_Key_Gen ChaCha20

[AD [padaD)] ¢ [Jpadto)

One-time key (r,s) Poly1305

Authentication tag T’ Ciphertext C'

len(AD)

len(C) |

figure by Morz25
28/49

ChaCha20 explained

Initial state:

Ctr

O(IxX| X0

T IX[X]|O

SIX[X]|O

Best attack breaks reduced-round version of 5/6 rounds (out of 20)

Quarter round:

b

)

@

EE
(W)
LS
)
e
L
()
Z

figure T. Arcieri

29/49

Odd round:

alalala
b|b|b|b
clclc|c

Llejefe

Even round:
alalala
b|b|b|b
clclc|c
d|d|d|d

On ChaCha20-Poly1305

® No table-lookups so not vulnerable to cache attacks
ChaCha20 is an Addition-Rotation-XOR (ARX) cipher
® security is based on the mess these operations create when combined

® very efficient in software, less suited for hardware implementation

hard to protect against side channel attacks exploiting measurement of power
consumption or electromagnetic emanations
® Poly1305 is a polynomial MAC function in F, with p = el _ 5
® In case the diversifier (called N) repeats:
e difference of plaintexts leaks
® authentication key r, s leaks, so forgery with same N becomes easy

® Diversifier is limited to 96 bits

ChaCha20-Poly1305 is embraced by Big Tech and the cool crowd!
30/49

Deck functions and modes

Deck function based crypto

Refactoring of symmetric crypto, with a three-layer approach:

@ Build permutation f
® Construct a new kind of primitive Fi on top of it

® input and output of variable length (preferably arbitrary length)
® output of Fix(X) should look as a sequence of random bits

® assurance: based on public scrutiny by cryptanalysts

© Build modes on top of this function that are proven secure if Fy is secure

31/49

Definition of a deck function

A deck function Fg
Z=0"+ Fk (X(l);...;X(m)> < q

e Input: sequence of strings X(1); ... X(m)
® Qutput: potentially infinite output

¢ pseudo-random function of the input
® taking n bits starting from offset g

doubly extendable cryptographic keyed function

32/49

Stream encryption: short input, long output

plaintext eag;; I5ll Ciphertext

C « P+ Fi (N)

33/49

MAC computation: long input, short output
— plaintext
plaintext

T < 0"+ Fx (P)

34/49

Nonce-based authenticated encryption

X < P+ Fk (AD)
T «+ 0' + Fk (AD; X)
C+ X||T

35/49

AE without nonce requirement: variant of SIV [Rogaway, Shrimpton Eurocrypt '06]

T« 0" + Fx (AD; P||0)
X < P+ Fx (AD; T||1)
C+ X||T

36/49

Wide block cipher with double-decker, as Deck-WBC in [KT, eprint 2016,/1188]

Encipher P ¢ Z5 with K and tweak

ph
(L,R) <« split(P)
Ro +— Ry + Hgk(L||0)
L <L + Gk(W:R|) [e
+~ R + Gg(W;L|0)
Lo +— Ly + HK(R||1)
C «~L || R (& ———He.r

return ciphertext C of length |P]

Security bound proven in [Gunsing et al, ToSC 2019/4]
37/49

Deck-WBC-AE: robust AE [Hoang, Krovetz and Rogaway, Eurocrypt '15]

——
Deck-WBC i
| |

Deck-WBC!

38/49

...and much more

® Support for sessions

® allow intermediate tags for online operation
® allows integrated authentication of bidirectional communication

Trade-off of efficiency vs robustness against misuse

Support for committing authenticated encryption

...and all their combinations

See
“Jammin’ on the deck” [Bacuieti et al., Asiacrypt '22]
“Committing authenticated encryption based on SHAKE" [Eprint '23/1494]

39/49

Building deck functions, serially

Sponge [Keccak Team, Ecrypt 2008]

/ / / O U/
absorbing:squeezing

Taking K as first part of input gives something close to a deck function

40/49

Keyed duplex object

V4 o V4 o V4

{ /q\r'\
Pany
U U

f fL f
D
A% %

/ N

E.g., STROBE [Hamburg 2017], XOODYAK, SUBTERRANEAN, ASCON [NIST lwc]

® Deck function with length-restricted input and output strings
® Restrictions can be circumvented with a thin input-encoding layer on top
e Cryptanalysis: plug in (round-reduced) permutation and try to break

41/49

Parallel deck functions

How to build a parallelizable deck function?

-
ws

42/49

Farfalle: early attempt [KT 2014-2016]

43/49

Farfalle as published in [Keccak Team + Seth Hoffert, ToSC 2018]

Derivation of mask k from user key K using py

® Linear input mask rolling and p. to prevent collisions in state at input of pq

Non-linear state rolling, p. and mask against state retrieval from output

Input-output attacks have to deal with p, o pq o pc

44/49

Xoodoo and Xoofff

The permutation Xoodoo [Keccak team with Seth Hoffert, ToSC 2018]

® |nspired by 384-bit permutation Gimli [Bernstein et al., CHES 2017]
® compact on low-end: fits registers of ARM Cortex M3/M4
® fast on high-end: suitable for SIMD
® not suited for Farfalle

e X00ODOO

® 384-bit permutation KECCAK philosophy ported to Gimli shape
® main purpose: usage in Farfalle: XOOFFF
o efficient on wide range of platforms

45/49

Xoodoo + Farfalle = Xoofff

e f = X00DOO[6]
® |nput mask rolling with LFSR, state rolling with NLFSR

46/49

Xoofff performance

ARM Cortex Intel
MO M3 | Skylake | SkylakeX
mask derivation | 1985 781 168 74 cycles
less than 48 bytes | 5658 2568 504 358 cycles
MAC computation use case:
long inputs | 260 8.8 0.90 0.40 cycles/byte
Stream encryption use case:
long outputs‘ 25.1 8.1 0.94 0.51 cycles/byte
AES-128 counter mode | 121.4 33.2 0.65 0.65 cycles/byte

47/49

Conclusions

® There are many AE schemes

In classical schemes
® encryption usually done with block ciphers
® tag computation usually done with polynomial hashes
® AES-GCM and ChaCha20-Poly1305 dominate

Secure deck functions are very powerful primitives

® nonce-based (session) AE
® S|V-based (session) AE
® Wide block encryption

Deck functions can be built from permutations
® compact: keyed duplex
® computationally efficient: Farfalle

Using X00ODOO already gives very competitive deck function XOOFFF
48/49

Thanks for your attention!

49/49

	Authenticated encryption
	Deck functions and modes
	Building deck functions, serially
	Parallel deck functions
	Xoodoo and Xoofff

