
CryptoVerif: Mechanising Game-Based Proofs

Part I

Charlie Jacomme

June 06, 2023

Inria Paris

Intro

Who are we?

Benjamin Lipp

benjamin.lipp@mpi-sp.org

(HPKE case study in CryptoVerif)

Charlie Jacomme

charlie.jacomme@inria.fr

(Post-quantum CryptoVerif)

Bruno Blanchet

bruno.blanchet@inria.fr

(CryptoVerif’s creator, not a fan of travel. . .)

1

Who are we?

Benjamin Lipp

benjamin.lipp@mpi-sp.org

(HPKE case study in CryptoVerif)

Charlie Jacomme

charlie.jacomme@inria.fr

(Post-quantum CryptoVerif)

Bruno Blanchet

bruno.blanchet@inria.fr

(CryptoVerif’s creator, not a fan of travel. . .)

1

Who are we?

Benjamin Lipp

benjamin.lipp@mpi-sp.org

(HPKE case study in CryptoVerif)

Charlie Jacomme

charlie.jacomme@inria.fr

(Post-quantum CryptoVerif)

Bruno Blanchet

bruno.blanchet@inria.fr

(CryptoVerif’s creator, not a fan of travel. . .)

1

The plan for today

The goal
CryptoVerif: automatically get security guarantees on crypto constructions

Timetable (pessimistic version)

• 9h00-10h30 - Listening/Talking: Context, Motivation, Theory, Demo

• 11h00-12h30 - Doing

• 14h00-15h30 - Listening/Talking: Going further

• 16h00-17h30 - More doing

2

The plan for today

The goal
CryptoVerif: automatically get security guarantees on crypto constructions

Timetable (pessimistic version)

• 9h00-10h30 - Listening/Talking: Context, Motivation, Theory, Demo

• 11h00-12h30 - Doing

• 14h00-15h30 - Listening/Talking: Going further

• 16h00-17h30 - More doing

2

Cryptographic protocols

Cryptographic protocols
Distributed that aims at establishing secure communications.

á I n

ê EMV

þ
(Sloth – Bhargavan et al. 2015)

þ
(Anonymity – Basin et al. 2018)

þ
(No contact ceiling – Radu et al. 2021)

3

Cryptographic protocols

Cryptographic protocols
Distributed that aims at establishing secure communications.

á I n

ê EMV

þ
(Sloth – Bhargavan et al. 2015)

þ
(Anonymity – Basin et al. 2018)

þ
(No contact ceiling – Radu et al. 2021)

3

Security Proofs

To avoid attacks

• a proof rules out all attacks captured by the model;

• a legal obligation for e-voting in Switzerland.

For which attackers?

Symbolic Model

�
Computational Model Quantum Computers

4

Security Proofs

To avoid attacks

• a proof rules out all attacks captured by the model;

• a legal obligation for e-voting in Switzerland.

For which attackers?

Symbolic Model

�
Computational Model Quantum Computers

4

Security Proofs

To avoid attacks

• a proof rules out all attacks captured by the model;

• a legal obligation for e-voting in Switzerland.

For which attackers?

Symbolic Model

�
Computational Model Quantum Computers

4

Security Proofs

To avoid attacks

• a proof rules out all attacks captured by the model;

• a legal obligation for e-voting in Switzerland.

For which attackers?

Symbolic Model

�
Computational Model Quantum Computers

4

Proofs?

“In our opinion, many proofs in cryptography have become essentially unverifiable. Our field

may be approaching a crisis of rigor.”

— Bellare and Rogaway [BR06]

“Some of the reasons for this problem are social (e.g., we mostly publish in conferences rather

than journals), but the true cause of it is that our proofs are truly complex.”

— Halevi [Hal05]

5

Proofs?

“In our opinion, many proofs in cryptography have become essentially unverifiable. Our field

may be approaching a crisis of rigor.”

— Bellare and Rogaway [BR06]

“Some of the reasons for this problem are social (e.g., we mostly publish in conferences rather

than journals), but the true cause of it is that our proofs are truly complex.”

— Halevi [Hal05]

5

How to make proofs?

By hand
The OAEP proof:

A
þ

AA
þ þ

A
þ

A
þ

A
✓

1994 2001 2004 2009 2011

The solution: computer-aided cryptography
Programs help us do, check, or automate proofs.

(Proverif, Tamarin, DeepSec, EasyCrypt, CryptoVerif, Squirrel, . . .)

6

How to make proofs?

By hand
The OAEP proof:

A
þ

AA
þ þ

A
þ

A
þ

A
✓

1994 2001 2004 2009 2011

The solution: computer-aided cryptography
Programs help us do, check, or automate proofs.

(Proverif, Tamarin, DeepSec, EasyCrypt, CryptoVerif, Squirrel, . . .)

6

How to make proofs?

By hand
The OAEP proof:

A
þ

AA
þ þ

A
þ

A
þ

A
✓

1994 2001 2004 2009 2011

The solution: computer-aided cryptography
Programs help us do, check, or automate proofs.

(Proverif, Tamarin, DeepSec, EasyCrypt, CryptoVerif, Squirrel, . . .)

6

How to make proofs?

By hand
The OAEP proof:

A
þ

AA
þ þ

A
þ

A
þ

A
✓

1994 2001 2004 2009 2011

The solution: computer-aided cryptography
Programs help us do, check, or automate proofs.

(Proverif, Tamarin, DeepSec, EasyCrypt, CryptoVerif, Squirrel, . . .)

6

How to make proofs?

By hand
The OAEP proof:

A
þ

AA
þ þ

A
þ

A
þ

A
✓

1994 2001 2004 2009 2011

The solution: computer-aided cryptography
Programs help us do, check, or automate proofs.

(Proverif, Tamarin, DeepSec, EasyCrypt, CryptoVerif, Squirrel, . . .)

6

How to make proofs?

By hand
The OAEP proof:

A
þ

AA
þ þ

A
þ

A
þ

A
✓

1994 2001 2004 2009 2011

The solution: computer-aided cryptography
Programs help us do, check, or automate proofs.

(Proverif, Tamarin, DeepSec, EasyCrypt, CryptoVerif, Squirrel, . . .)

6

CryptoVerif

• Automated proofs of security

• Works in the classical cryptographic framework

• Used to prove TLS, HPKE, WireGuard, SSH. . .

7

Other tools

Symbolic Model

• Tamarin, DeepSec, Proverif → high automation, weaker guarantees but works on

highly complex protocols

Computational Model

• EasyCrypt → very low level, no automation, does not scale to protocols

• CryptoVerif → fully automated, both for primitives and protocols

• Squirrel → no automation, but scales to more complex protocols

8

Crypto Proofs

The main proof technique

Indistinguishability
The attacker on the network cannot decide which side it sees

Real World ≈

p

Ideal World

A tries to send to B some secret A and B magically share a secret

max
A
| Pr [Ideal(A)⇒ 1]− Pr [Real(A)⇒ 1] | ≤ p

Game Hopping

Real World ≈p1 . . . ≈pn Ideal World

9

The main proof technique

Indistinguishability
The attacker on the network cannot decide which side it sees

Real World ≈

p

Ideal World

A tries to send to B some secret A and B magically share a secret

max
A
| Pr [Ideal(A)⇒ 1]− Pr [Real(A)⇒ 1] | ≤ p

Game Hopping

Real World ≈p1 . . . ≈pn Ideal World

9

The main proof technique

Indistinguishability
The attacker on the network cannot decide which side it sees

Real World ≈ p Ideal World

A tries to send to B some secret A and B magically share a secret

max
A
| Pr [Ideal(A)⇒ 1]− Pr [Real(A)⇒ 1] | ≤ p

Game Hopping

Real World ≈p1 . . . ≈pn Ideal World

9

The main proof technique

Indistinguishability
The attacker on the network cannot decide which side it sees

Real World ≈ p Ideal World

A tries to send to B some secret A and B magically share a secret

max
A
| Pr [Ideal(A)⇒ 1]− Pr [Real(A)⇒ 1] | ≤ p

Game Hopping

Real World ≈p1 . . . ≈pn Ideal World

9

A few game hops

Basics

• G ≈0 G

• G1 ≈p1 G2 ∧ G2 ≈p2 G3 ⇒ G1 ≈p1+p2 G3

Concrete code examples

•
x ←$ {0, 1}η;
y ←$ {0, 1}η;

≈0
y ←$ {0, 1}η;
x ←$ {0, 1}η;

•
x ←$ {0, 1}η;
y ←$ {0, 1}η;
return x = y

≈ 1
2η

return false

10

A few game hops

Basics

• G ≈0 G

• G1 ≈p1 G2 ∧ G2 ≈p2 G3 ⇒ G1 ≈p1+p2 G3

Concrete code examples

•
x ←$ {0, 1}η;
y ←$ {0, 1}η;

≈0
y ←$ {0, 1}η;
x ←$ {0, 1}η;

•
x ←$ {0, 1}η;
y ←$ {0, 1}η;
return x = y

≈ 1
2η

return false

10

A few game hops

Basics

• G ≈0 G

• G1 ≈p1 G2 ∧ G2 ≈p2 G3 ⇒ G1 ≈p1+p2 G3

Concrete code examples

•
x ←$ {0, 1}η;
y ←$ {0, 1}η;

≈0
y ←$ {0, 1}η;
x ←$ {0, 1}η;

•
x ←$ {0, 1}η;
y ←$ {0, 1}η;
return x = y

≈ 1
2η

return false

10

Your first crypto assumption

The IND-CPA game

IND-CPAb

k $← K
return AEncb

Encb(m0,m1)

r $← {0, 1}Nn

return Enc(mb, k, r)

Encryption security

IND-CPA0 ≈P IND-CPA1

11

Your first crypto assumption

The IND-CPA game

IND-CPAb

k $← K
return AEncb

Encb(m0,m1)

r $← {0, 1}Nn

return Enc(mb, k, r)

Encryption security

IND-CPA0 ≈P IND-CPA1

11

The main ingredient

Reductions

H1 ≈p H2 ⇒ C [H1] ≈p+ϵ(C) C [H2]

Rewriting games
H1 ≈p H2 is a cryptographic assumption, e.g., big integers are hard to factor:

G1 = C [H1] ≈p+ϵ(C) C [H2]

12

The main ingredient

Reductions

H1 ≈p H2 ⇒ C [H1] ≈p+ϵ(C) C [H2]

Rewriting games
H1 ≈p H2 is a cryptographic assumption, e.g., big integers are hard to factor:

G1 = C [H1] ≈p+ϵ(C) C [H2]

12

Formalizing game-based proofs?

CryptoVerif modeling

• Implements a kind of programming language for sampling, conditionals, . . .

• Allows to define the multiple domains (all bitstrings, keys, . . .), called types

• Allows to define oracles available to the attacker in parallel or sequentially.

CryptoVerif reasoning
Rewrites games with a set of valid tactics, and based on cryptographic assumptions

pre-defined in libraries.

13

Formalizing game-based proofs?

CryptoVerif modeling

• Implements a kind of programming language for sampling, conditionals, . . .

• Allows to define the multiple domains (all bitstrings, keys, . . .), called types

• Allows to define oracles available to the attacker in parallel or sequentially.

CryptoVerif reasoning
Rewrites games with a set of valid tactics, and based on cryptographic assumptions

pre-defined in libraries.

13

Demo!

The IND-CPA game in CryptoVerif: live-demo-1.ocv

14

An IND-CPA variant

IND-CPA-Zb

k $← K
return AEncb

Encb(m)

r $← {0, 1}Nn

if b then

return Enc(m, k, r)

else

return Enc(0len(m), k, r)

A first CryptoVerif proof?
Assuming that IND-CPA-Z0 ≈P IND-CPA-Z1, prove that:

IND-CPA0 ≈P+ϵ IND-CPA1

15

An IND-CPA variant

IND-CPA-Zb

k $← K
return AEncb

Encb(m)

r $← {0, 1}Nn

if b then

return Enc(m, k, r)

else

return Enc(0len(m), k, r)

A first CryptoVerif proof?
Assuming that IND-CPA-Z0 ≈P IND-CPA-Z1, prove that:

IND-CPA0 ≈P+ϵ IND-CPA1

15

Our first proof

Let’s simplify
While CryptoVerif can prove arbitrary equivalences, it is easier to prove secrecy queries.

IND-CPA

b $← {0, 1} k $← K
return AEnc

Encb(m0,m1)

r $← {0, 1}Nn

if b then

return Enc(m0, k, r)

else

return Enc(m1, k, r)

Our goal
Assuming that IND-CPA-Z0 ≈P IND-CPA-Z1, prove that b is secret in IND-CPA:

max
A
| Pr [IND-CPA(A)⇒ 1]− Pr [IND-CPA(A)⇒ 0]− 1

2
| ≤ P + ϵ

16

Our first proof

Let’s simplify
While CryptoVerif can prove arbitrary equivalences, it is easier to prove secrecy queries.

IND-CPA

b $← {0, 1} k $← K
return AEnc

Encb(m0,m1)

r $← {0, 1}Nn

if b then

return Enc(m0, k, r)

else

return Enc(m1, k, r)

Our goal
Assuming that IND-CPA-Z0 ≈P IND-CPA-Z1, prove that b is secret in IND-CPA:

max
A
| Pr [IND-CPA(A)⇒ 1]− Pr [IND-CPA(A)⇒ 0]− 1

2
| ≤ P + ϵ

16

Our first proof

Let’s simplify
While CryptoVerif can prove arbitrary equivalences, it is easier to prove secrecy queries.

IND-CPA

b $← {0, 1} k $← K
return AEnc

Encb(m0,m1)

r $← {0, 1}Nn

if b then

return Enc(m0, k, r)

else

return Enc(m1, k, r)

Our goal
Assuming that IND-CPA-Z0 ≈P IND-CPA-Z1, prove that b is secret in IND-CPA:

max
A
| Pr [IND-CPA(A)⇒ 1]− Pr [IND-CPA(A)⇒ 0]− 1

2
| ≤ P + ϵ

16

Our first proof

Let’s simplify
While CryptoVerif can prove arbitrary equivalences, it is easier to prove secrecy queries.

IND-CPA

b $← {0, 1} k $← K
return AEnc

Encb(m0,m1)

r $← {0, 1}Nn

if b then

return Enc(m0, k, r)

else

return Enc(m1, k, r)

Our goal
Assuming that IND-CPA-Z0 ≈P IND-CPA-Z1, prove that b is secret in IND-CPA:

max
A
| Pr [IND-CPA(A)⇒ 1]− Pr [IND-CPA(A)⇒ 0]− 1

2
| ≤ P + ϵ

16

Demo!

Cryptoverif

• How is the IND-CPA-Z assumption written in the library? live-demo-2.ocv

• How to use it to prove the secrecy of b in IND-CPA? live-demo-3.ocv

17

Your turn! (soon)

A new primitive

A MAC guarantees the integrity and authenticity of the message because only someone who

knows the secret key can compute the MAC.

Strong UnForgeability under Chosen Message Attacks

SUF-CMAb

k $← K
L = ∅
(m, s)← AMac

if b then

return verify(m, k, s) ∧ (m, s) /∈ L
else

return false

Mac(m)

L ← L ∪ {(m,mac(m, k))}
return mac(m, k)

18

A new primitive

A MAC guarantees the integrity and authenticity of the message because only someone who

knows the secret key can compute the MAC.

Strong UnForgeability under Chosen Message Attacks

SUF-CMAb

k $← K
L = ∅
(m, s)← AMac

if b then

return verify(m, k , s) ∧ (m, s) /∈ L
else

return false

Mac(m)

L ← L ∪ {(m,mac(m, k))}
return mac(m, k)

18

Encrypt-Then-Mac

Integrity
IND-CPA encryption does not say anything about integrity!

What if enc(m1, k, r1)⊕ enc(m2, k , r2) = enc(m1 ⊕m2, k, r2)?

Solution
We define an authenticated encryption scheme by the encrypt-then-MAC construction:

enc ′(m, (k ,mk)) = c1 ∥mac(c1 ,mk) where c1 = enc(m, k).

dec ′(c1∥m1 , (k ,mk)) = if mac(c1 ,mk) = m1 then dec(c1 , k) else ⊥

19

The property

Can we prove that decryption only succeeds on honestly produced cyphertext?

INT-CTXT

k $← K
L = ∅
return AEnc,Dec

Enc(m)

c $← enc ′(m, k)

L ← L ∪ {c}
return c

DecTest(c)

if c ∈ L
return True

else if dec ′(c , k) ̸= ⊥ then

Bad

else

return False

20

This morning’s goal

CryptoVerif
Under the assumption that enc is IND-CPA-secure and mac is SUF-CMA-secure, show that the

Encrypt-Then-Mac enc ′ is IND-CPA-secure and INT-CTXT-secure.

21

A few additional CryptoVerif

constructs

Tables

Table as global storage
We declare a table as a database where each line stores a tuple of the given type.

table tableName(type1 , ..., typen).

Lines can be inserted with

insert tableName(value1 , ..., valuen);

And queries can be made with:

get tableName (=value1 , var2 , ..., varn) in

22

Tables

Table as global storage
We declare a table as a database where each line stores a tuple of the given type.

table tableName(type1 , ..., typen).

Lines can be inserted with

insert tableName(value1 , ..., valuen);

And queries can be made with:

get tableName (=value1 , var2 , ..., varn) in

22

Sequential Oracles

let processA (...) =

O1(...) :=

...

return (...);

O2(...) :=

...

return (...).

let processB (...) =

O3(...) :=

...

return (...);

O4(...) :=

...

return (...)

process Ostart () :=

...

return;

run processA (...) | run processB (...)
23

Pattern matching

Encoding functions
Specific functions can be declared as easily invertible:

fun encode(type1 , ..., typen) [data].

One can then get back the inputs with pattern matching:

let encode(var1 , ..., varn) = var in

...

24

Reachability query

Events
Events can be defined and raised in games:

event bad.

...; event bad.

One can then make an unreachability query:

query event(bad) ==> false.

25

And...

That’s it!

• A cheatsheet.ocv is available.

• You should follow instructions-practical-session-1.pdf at:

https://github.com/charlie-j/summer-school-2023/

26

https://github.com/charlie-j/summer-school-2023/

	Intro
	Crypto Proofs
	Your turn! (soon)
	A few additional CryptoVerif constructs

