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Recap: CryptoVerif Formalizes Game-Based Proofs

encode security properties here

initial game → · · · →︸ ︷︷ ︸
transformations

intermediate games → · · · →︸ ︷︷ ︸
transformations

final game

security properties easily provable here

real game → · · · →︸ ︷︷ ︸
transformations

intermediate games ← · · · ←︸ ︷︷ ︸
transformations

ideal game

• CryptoVerif constructs a sequence of computationally indistinguishable games

• built-in proof strategy, and detailed guidance by user

• supports indistinguishability, secrecy, authentication properties

• computes exact security probability bound
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What to Expect from Part II

A more complex example, a protocol with multiple messages:

Signed Diffie-Hellman, a 2-party Authenticated Key Exchange protocol

What’s new?

• model a hash function as a random oracle

• use a Computational Diffie-Hellman (CDH) assumption

• prove key secrecy in a protocol

• prove authentication properties using correspondences between events

• model a Public-Key Infrastructure using a list (table in CryptoVerif)
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Cryptographic Building Blocks



Cryptographic Building Block: Hash Function

Hash Function
hash : {0, 1}∗ → {0, 1}hashlen.

Example:

k ← hash(m)

Intuition: for different inputs, outputs are uniformly random and independent of each other.
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Cryptographic Building Block: Signature

Cryptographic Signature

sk , pk $← keygenSig()

σ $← sign(m, sk)

b ← verify(m, pk, σ) returns 1 iff σ is a correct signature

Intuition: it is hard to forge a signature
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Cryptographic Building Block: Diffie-Hellman

Diffie-Hellman Non-Interactive Key Exchange

For simplicity, in a prime-order cyclic group G = (Z/pZ)∗ of order p with generator g .

private keys: a, b $← Z = {1, . . . , p − 1}
public keys: g a mod p, gb mod p ∈ G . (g a, gb in short)

DH shared secret: (g a)b mod p = (gb)a mod p = g ab mod p

Intuition: Knowing only the public keys, it is hard to recognize or compute the DH shared secret
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Our Case Study:

The Signed Diffie-Hellman

Protocol



A

knows skA, pkB

B

knows skB , pkA

a←$ Z A, B, g a

b ←$ Z

sigB ← sign(A ∥B ∥ g a ∥ gb, skB)

event beginB(A,B, g a, gb)
A, B, gb, sigB

if verify(A ∥B ∥ g a ∥ gb, pkB , sigB)

sigA ← sign(A ∥B ∥ g a ∥ gb, skA)

kA ← hash((gb)a)

event endA(A,B, g a, gb)

sigA

if verify(A ∥B ∥ g a ∥ gb, pkA, sigA)

kB ← hash((g a)b)

event endB(A,B, g a, gb)
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Signed Diffie-Hellman: Security Properties

• The shared secrets kA and kB are secret

(indistinguishable from random bitstrings of equal length)

• If A is convinced to have concluded a session with B using ephemerals g a, gb, then B

actually started such a session

• If B is convinced to have concluded a session with A using ephemerals g a, gb, then A is

likewise convinced
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Cryptographic Assumptions



Cryptographic Assumptions

We use the following cryptographic assumptions to prove these security properties:

• hash is a random oracle

• (sign, verify) is a UF-CMA-secure probabilistic signature

• the CDH assumption holds in the group G
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Random Oracle as Ideal Model for Hash Functions

A random oracle is an idealized random function that returns

• an independent uniformly random value on new input,

• the same value than before on previously seen input.

To model this, adversarial calls are observed by the security game through an oracle.

Definitional rewriting step done by CryptoVerif:

ROMb

L ← ∅
return Ahashb()

hash0(m)

return hash(m)

hash1(m)

if ∃k : (m, k) ∈ L
return k

else

k $← {0, 1}hashlen

L ← L ∪ {(m, k)}
return k

9



Random Oracle – Preamble in CryptoVerif

Using a random oracle in CryptoVerif:

type hashfunction [fixed].

expand ROM_hash(

hashfunction , (* type for hash function choice *)

G, (* type of input *)

key , (* type of output *)

hash , (* name of hash function *)

hashoracle , (* process defining the hash oracle *)

qH (* parameter: number of calls *)

).
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Random Oracle Part – Macro Internals [lib]

The macro defines the hash function. The first parameter models the choice of the specific

hash function: The adversary could call hash, but does not know the value the protocol uses

for the 1st parameter.

fun hash(hashfunction , G): key.

The macro defines the oracle we must expose such that the adversary can use the RO:

param qH.

let hashoracle(hf: hashfunction) :=

foreach ih <= qH do

Ohash(x: G) :=

return(hash(hf , x)).

It allows qH calls, a parameter that will appear in the final probability formula.
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Random Oracle – Usage

In the setup of the initial game, we sample a random hash function

hf <-R hashfunction;

and use it in each call of hash:

kA <- hash(hf , gab);

We must include the process defined by the macro, such that the adversary can access the

random oracle for its own calls:

run hashoracle(hf)

12



Random Oracle – Applying the Assumption [lib]

The hash function might be called within a replicated oracle:

foreach i <= N do (* ... *) kA <- hash(hf , gab) (* ... *)

Variables inside a replication are implicitly defined as arrays. Values are accessible via the

replication index: gab[i], kA[i]

An array lookup using find can access specific values. Here is how to locally model the call by

a random oracle (assuming that there is only this one call to hash):

foreach i <= N do (* ... *)

(find j <= N suchthat defined(gab[j], kA[j]) && gab = gab[j]

then kA[j]

else kA <-R key; kA)

(* ... *)
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Random Oracle – Applying the Assumption [lib]

find j <= N suchthat defined(gab[j], kA[j]) && gab = gab[j]

then kA[j]

else kA <-R key; kA

When applying the RO assumption, CryptoVerif replaces each call of the hash function by an

array lookup, comparing with all other inputs:

There will be one find branch per hash call.

In particular, the hash call in the hashoracle process will be replaced by a array lookup,

comparing with all hash inputs used in the entire game.
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Random Oracle – Applying the Assumption [lib]

foreach i <= N do

(* ... *)

kA <- hash(hf , gab)

(* ... *)

let hashoracle(hf: hashfunction) :=

foreach ih <= qH do

Ohash(x: G) :=

return(hash(hf , x)).

15



Random Oracle – Applying the Assumption [lib]

foreach i <= N do

(* ... *)

kA <- hash(hf , gab) (* before rewriting *)

(* ... *)

let hashoracle(hf: hashfunction) :=

foreach ih <= qH do

Ohash(x: G) :=

find j <= qH suchthat defined(x[j], k[j]) && x = x[j] then

return(k[j])

else find i <= N suchthat

defined(gab[i], kA[i]) && x = gab[i] then

return(kA[i])

else

k <-R key;

return(k). 16



UF-CMA-Secure Probabilistic Signature

• Unforgeability under Chosen Message Attack (UF-CMA)

• Security notion implemented by the appropriate CryptoVerif macro (simplified), where the

adversary advantage

AdvUF−CMA
sign (A) = | Pr [UF-CMA0(A)⇒ 1]− Pr [UF-CMA1(A)⇒ 1] | is negligible.

UF-CMAb

r $← K
L ← ∅
return ASign,Verifyb(pk(r))

Oracle Sign(m)

L ← L ∪ {m}
σ $← sign(m, sk(r))

return σ

Oracle Verify0(m, σ)

return verify(m, pk(r), σ)

Oracle Verify1(m, σ)

return m ∈ L ∧ verify(m, pk(r), σ)
17



Types and Probabilities for the Signature

Types define names for subsets of the bitstrings. The annotations restrict them on a high level.

type keyseed [large ,fixed].

type pkey [bounded ].

type skey [bounded ].

type message [bounded ].

type signature [bounded ].

We define names for probabilities. They will appear in the final probability bound.

proba Psign. (* breaking the UF-CMA property *)

proba Psigncoll. (* probability of collision between

independently generated keys *)
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Using the Macro: UF-CMA-secure Signature

expand UF_CMA_proba_signature(

(* types , to be defined outside the macro *)

keyseed ,

pkey ,

skey ,

message ,

signature ,

(* names for functions defined by the macro *)

skgen ,

pkgen ,

sign ,

verify ,

(* probabilities , to be defined outside the macro *)

Psign ,

Psigncoll

). 19



Functions Defined by the Signature Macro [lib]

In this example, we use a probabilistic signature. The macro makes this transparent for us, by

defining the seed type and a sign wrapper function.

fun skgen(keyseed ):skey.

fun pkgen(keyseed ):pkey.

fun verify(message , pkey , signature ): bool.

fun sign_r(message , skey , sign_seed ): signature.

letfun sign(m: message , sk: skey) =

r <-R sign_seed; sign_r(m, sk, r).

equation forall m: message , r: keyseed , r2: sign_seed;

verify(m, pkgen(r), sign_r(m, skgen(r), r2)) = true.
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The Computational Diffie-Hellman (CDH) Assumption

• computing g xy from g x and g y is hard

• a comparison c = g xy of an adversary-computed value c with g xy is indistinguishable from

false for the adversary

• using CDH in a game-rewriting step in CryptoVerif, in a simplified single-key version,

where the adversary advantage

AdvCDH
G (A) = | Pr [CDH0(A)⇒ 1]− Pr [CDH1(A)⇒ 1] | is negligible.

CDHb

x , y $← Z

return ADDHb(g x , g y )

DDH0(c)

return c = g xy

DDH1(c)

return false

21



Diffie-Hellman Part I

type Z [large ,bounded ].

type G [large ,bounded ].

proba PCollKey1.

proba PCollKey2.

CryptoVerif’s default library comes with several

macros for groups.

We’ll use a basic group in which some collision

probabilities are negligible.

expand DH_proba_collision(

G, (* type of group elements *)

Z, (* type of exponents *)

g, (* group generator *)

exp , (* exponentiation function *)

exp ’, (* exp. func. after transformation *)

mult , (* func. for exponent multiplication *)

PCollKey1 ,(* g^( fresh x) collides with indep. Y *)

PCollKey2 (* g^(fr. x * fr. y) coll. w/ indep. Y *)

). 22



Diffie-Hellman Part II [lib]

The macro defines the exponentiation function, a group generator, and equations for exponent

multiplication. An extract:

fun exp(G, Z): G.

const g: G.

fun mult(Z, Z): Z.

equation builtin commut(mult).

equation forall a:G, x:Z, y:Z;

exp(exp(a, x), y) = exp(a, mult(x, y)).
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Diffie-Hellman Part III

Assumptions like CDH, DDH, GDH, . . . must be instantiated with a separate macro. We use

CDH, indicating the previously defined group:

proba pCDH. (* probability of breaking CDH in G *)

expand CDH(G, Z, g, exp , exp ’, mult , pCDH).

This macro implements a multi-key version of the version presented on the slides.
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Semantics of the Security

Queries



A

knows skA, pkB

B

knows skB , pkA

a←$ Z A, B, g a

b ←$ Z

sigB ← sign(A ∥B ∥ g a ∥ gb, skB)

event beginB(A,B, g a, gb)
A, B, gb, sigB

if verify(A ∥B ∥ g a ∥ gb, pkB , sigB)

sigA ← sign(A ∥B ∥ g a ∥ gb, skA)

kA ← hash((gb)a)

event endA(A,B, g a, gb)

sigA

if verify(A ∥B ∥ g a ∥ gb, pkA, sigA)

kB ← hash((g a)b)

event endB(A,B, g a, gb)
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Definition: Key Secrecy for kA (and similar kB) . . . [1]

. . . if an adversary has a negligible probability of distinguishing keys kA from uniformly random

bitstrings of same length:

Advkey-secrecy,kAsignedDH (A) =| Pr [Greal(A)⇒ 1]

− Pr [Grandom(A)⇒ 1] |

• where Greal is the original game (the initial game modeled in CryptoVerif), and

• in Grandom (implicitly reasoned about by CryptoVerif), the keys kA are replaced by

independent uniformly random bitstrings of the same length.

This is different from usual pen-and-paper security notions where there is only one test session;

here, all (honest) sessions are test sessions!
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Definition: Authentication of A (and similar for B) . . . [2]

. . . if an adversary has a negligible probability of producing a sequence of events that violates

the correspondence property:

Advauth,AsignedDH(A) =

Pr

 AOstart,OA·,OB·,Opki,OH : A produces a sequence of events

such that not every endB(A,B, g
a, gb) is preceeded

by a distinct endA(A,B, g
a, gb)
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Next Exercise Session

(* It’s your turn *)

You should follow instructions-practical-session-2.pdf at:

https://github.com/charlie-j/summer-school-2023/

Feel free to refer to the cheatsheet, and to the slides of both sessions, and to ask questions!
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Interactive Mode

Include interactive in the proof environment to start the interactive mode:

proof {

interactive

}

• out game "filename" outputs the current game. Use a .ocv extension such that your

editor highlights the syntax.

• crypto assumption(function) applies the assumption to the function. Example:

crypto rom(hash)

• success tries to prove the queries

• simplify tries to simplify the current game

• quit leaves interactive mode and continues non-interactively.

• Ctrl+D ends the programme
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