CryptoVerif: Mechanising Game-Based Proofs

Part II

Benjamin Lipp

June 6, 2023

Max Planck Institute for Security and Privacy

- CryptoVerif constructs a sequence of computationally indistinguishable games
- built-in proof strategy, and detailed guidance by user

- CryptoVerif constructs a sequence of computationally indistinguishable games
- built-in proof strategy, and detailed guidance by user
- supports indistinguishability, secrecy, authentication properties
- computes exact security probability bound

What to Expect from Part II

A more complex example, a protocol with multiple messages: Signed Diffie-Hellman, a 2-party Authenticated Key Exchange protocol

What's new?

- model a hash function as a random oracle
- use a Computational Diffie-Hellman (CDH) assumption
- prove key secrecy in a protocol
- prove authentication properties using correspondences between events
- model a Public-Key Infrastructure using a list (table in CryptoVerif)

Cryptographic Building Blocks

Cryptographic Building Block: Hash Function

 $\begin{array}{l} \text{Hash Function} \\ \text{hash}: \{0,1\}^* \rightarrow \{0,1\}^{\text{hashlen}}. \end{array}$

Example:

 $k \leftarrow \mathsf{hash}(m)$

Intuition: for different inputs, outputs are uniformly random and independent of each other.

Cryptographic Building Block: Signature

Cryptographic Signature

 $\begin{array}{l} sk, pk \stackrel{s}{\leftarrow} keygenSig() \\ \sigma \stackrel{s}{\leftarrow} sign(m, sk) \\ b \leftarrow verify(m, pk, \sigma) \text{ returns 1 iff } \sigma \text{ is a correct signature} \end{array}$

Intuition: it is hard to forge a signature

Cryptographic Building Block: Diffie-Hellman

Diffie-Hellman Non-Interactive Key Exchange

For simplicity, in a prime-order cyclic group $G = (\mathbb{Z}/p\mathbb{Z})^*$ of order p with generator g. private keys: $a, b \stackrel{s}{\leftarrow} Z = \{1, \dots, p-1\}$ public keys: $g^a \mod p, g^b \mod p \in G$. $(g^a, g^b \text{ in short})$ DH shared secret: $(g^a)^b \mod p = (g^b)^a \mod p = g^{ab} \mod p$

Intuition: Knowing only the public keys, it is hard to recognize or compute the DH shared secret

Our Case Study: The Signed Diffie-Hellman Protocol

Signed Diffie-Hellman: Security Properties

• The shared secrets k_A and k_B are secret (indistinguishable from random bitstrings of equal length)

Signed Diffie-Hellman: Security Properties

- The shared secrets k_A and k_B are secret (indistinguishable from random bitstrings of equal length)
- If A is convinced to have concluded a session with B using ephemerals g^a, g^b , then B actually started such a session

Signed Diffie-Hellman: Security Properties

- The shared secrets k_A and k_B are secret (indistinguishable from random bitstrings of equal length)
- If A is convinced to have concluded a session with B using ephemerals g^a, g^b , then B actually started such a session
- If *B* is convinced to have concluded a session with *A* using ephemerals g^a, g^b , then *A* is likewise convinced

Cryptographic Assumptions

Cryptographic Assumptions

We use the following cryptographic assumptions to prove these security properties:

- hash is a random oracle
- (sign, verify) is a UF-CMA-secure probabilistic signature
- the CDH assumption holds in the group G

Random Oracle as Ideal Model for Hash Functions

A random oracle is an idealized random function that returns

- an independent uniformly random value on new input,
- the same value than before on previously seen input.

To model this, adversarial calls are observed by the security game through an oracle. Definitional rewriting step done by CryptoVerif:

 $\frac{\underline{\text{ROM}}_b}{\mathcal{L} \leftarrow \emptyset}$ return $\mathcal{A}^{\text{hash}_b}()$ $\frac{\underline{\text{hash}}_0(m)}{\text{return hash}(m)}$

 $\begin{array}{l} \underline{\mathrm{hash}_1(m)} \\ \overline{\mathbf{if}} \ \exists k : (m,k) \in \mathcal{L} \\ \mathbf{return} \ k \\ \mathbf{else} \\ k \stackrel{\hspace{0.1em} \leftarrow}{\hspace{0.1em}} \{0,1\}^{\mathrm{hashlen}} \\ \mathcal{L} \leftarrow \mathcal{L} \cup \{(m,k)\} \\ \mathbf{return} \ k \end{array}$

Random Oracle – Preamble in CryptoVerif

Using a random oracle in CryptoVerif:

```
type hashfunction [fixed].
```

Random Oracle Part – Macro Internals

The macro defines the hash function. The first parameter models the choice of the specific hash function: The adversary could call hash, but does not know the value the protocol uses for the 1st parameter.

```
fun hash(hashfunction, G): key.
```

The macro defines the oracle we must expose such that the adversary can use the RO:

param qH.

```
let hashoracle(hf: hashfunction) :=
foreach ih <= qH do
Ohash(x: G) :=
return(hash(hf, x)).</pre>
```

It allows qH calls, a parameter that will appear in the final probability formula.

[lib]

Random Oracle – Usage

In the setup of the initial game, we sample a random hash function

hf <-R hashfunction;

and use it in each call of hash:

```
kA <- hash(hf, gab);</pre>
```

We must include the process defined by the macro, such that the adversary can access the random oracle for its own calls:

```
run hashoracle(hf)
```

Random Oracle – Applying the Assumption

The hash function might be called within a replicated oracle:

foreach i <= N do (* ... *) kA <- hash(hf, gab) (* ... *)</pre>

Variables inside a replication are implicitly defined as arrays. Values are accessible via the replication index: gab[i], kA[i]

[lib]

Random Oracle – Applying the Assumption

The hash function might be called within a replicated oracle:

foreach i <= N do (* ... *) kA <- hash(hf, gab) (* ... *)

Variables inside a replication are implicitly defined as arrays. Values are accessible via the replication index: gab[i], kA[i]

An array lookup using find can access specific values. Here is how to locally model the call by a random oracle (assuming that there is only this one call to hash):

foreach i <= N do (* ... *)

(find j <= N suchthat defined(gab[j], kA[j]) && gab = gab[j]
then kA[j]
else kA <-R key; kA)</pre>

(* ... *)

[lib]

```
find j <= N suchthat defined(gab[j], kA[j]) && gab = gab[j]
then kA[j]
else kA <-R key; kA</pre>
```

When applying the RO assumption, CryptoVerif replaces each call of the hash function by an array lookup, comparing with *all* other inputs:

There will be one find branch per hash call.

In particular, the hash call in the hashoracle process will be replaced by a array lookup, comparing with all hash inputs used in the entire game.

```
foreach i <= N do
  (* ... *)
  kA <- hash(hf, gab)
  (* ... *)</pre>
```

```
let hashoracle(hf: hashfunction) :=
foreach ih <= qH do
Ohash(x: G) :=
return(hash(hf, x)).</pre>
```

[lib]

Random Oracle – Applying the Assumption

```
foreach i <= N do
  (* . . *)
 kA <- hash(hf, gab) (* before rewriting *)</pre>
  (* ... *)
let hashoracle(hf: hashfunction) :=
  foreach ih <= qH do
  Ohash(x: G) :=
    find j \le qH such that defined(x[j], k[j]) && x = x[j] then
      return(k[j])
    else find i <= N suchthat
                      defined(gab[i], kA[i]) && x = gab[i] then
      return(kA[i])
    else
      k < -R key;
      return(k).
```

UF-CMA-Secure Probabilistic Signature

- Unforgeability under Chosen Message Attack (UF-CMA)
- Security notion implemented by the appropriate CryptoVerif macro (simplified), where the adversary advantage

 $\mathsf{Adv}^{\mathsf{UF}-\mathsf{CMA}}_{\mathit{sign}}(\mathcal{A}) = | \quad \mathsf{Pr}\left[\mathtt{UF}-\mathtt{CMA}_0(\mathcal{A}) \Rightarrow 1\right] - \mathsf{Pr}\left[\mathtt{UF}-\mathtt{CMA}_1(\mathcal{A}) \Rightarrow 1\right] | \quad \text{is negligible.}$

 $\frac{\text{Oracle Sign}(m)}{\mathcal{L} \leftarrow \mathcal{L} \cup \{m\}}$ $\sigma \stackrel{\$}{\leftarrow} sign(m, sk(r))$ **return** σ $\frac{\text{Oracle Verify}_0(m, \sigma)}{\text{return } verify}(m, pk(r), \sigma)$

 $\frac{\mathsf{Oracle Verify}_1(m,\sigma)}{\mathsf{return} \ m \in \mathcal{L} \land \mathit{verify}(m, \mathit{pk}(r), \sigma)}$

 $\underline{\text{UF-CMA}_b}$

 $r \stackrel{\leq}{\leftarrow} \mathcal{K}$ $\mathcal{L} \leftarrow \emptyset$ **return** $\mathcal{A}^{Sign, Verify_b}(pk(r))$

Types and Probabilities for the Signature

Types define names for subsets of the bitstrings. The annotations restrict them on a high level.

```
type keyseed [large,fixed].
type pkey [bounded].
type skey [bounded].
type message [bounded].
type signature [bounded].
```

We define names for probabilities. They will appear in the final probability bound.

Using the Macro: UF-CMA-secure Signature

```
expand UF_CMA_proba_signature(
  (* types, to be defined outside the macro *)
  keyseed.
  pkey,
  skey,
  message,
  signature,
  (* names for functions defined by the macro *)
  skgen,
  pkgen,
  sign,
  verify,
  (* probabilities, to be defined outside the macro *)
  Psign,
  Psigncoll
).
```

Functions Defined by the Signature Macro

In this example, we use a *probabilistic* signature. The macro makes this transparent for us, by defining the seed type and a sign wrapper function.

```
fun skgen(keyseed):skey.
fun skgen(keyseed).skey
```

```
fun pkgen(keyseed):pkey.
```

fun verify(message, pkey, signature): bool.
fun sign_r(message, skey, sign_seed): signature.

```
letfun sign(m: message, sk: skey) =
r <-R sign_seed; sign_r(m, sk, r).</pre>
```

equation forall m: message, r: keyseed, r2: sign_seed; verify(m, pkgen(r), sign_r(m, skgen(r), r2)) = true. [lib]

The Computational Diffie-Hellman (CDH) Assumption

• computing g^{xy} from g^x and g^y is hard

 CDH_{h}

- a comparison $c = g^{xy}$ of an adversary-computed value c with g^{xy} is indistinguishable from false for the adversary
- using CDH in a game-rewriting step in CryptoVerif, in a simplified single-key version. where the adversary advantage

$$\begin{array}{lll} \operatorname{Adv}_{G}^{\operatorname{CDH}}(\mathcal{A}) = | & \operatorname{Pr}\left[\operatorname{CDH}_{0}(\mathcal{A}) \Rightarrow 1\right] - \operatorname{Pr}\left[\operatorname{CDH}_{1}(\mathcal{A}) \Rightarrow 1\right] | & \text{ is negligible.} \\ \\ & \underbrace{\operatorname{DH}_{b}}{x, y \stackrel{s}{\leftarrow} Z} & \\ & \operatorname{return} \mathcal{A}^{\operatorname{DDH}_{b}}(g^{x}, g^{y}) & \underbrace{\operatorname{DDH}_{1}(c)}{\operatorname{return}} false \end{array}$$

Diffie-Hellman Part I

```
type Z [large,bounded].
type G [large,bounded].
```

proba PCollKey1. proba PCollKey2. CryptoVerif's default library comes with several macros for groups. We'll use a basic group in which some collision probabilities are negligible.

```
expand DH_proba_collision(
           (* type of group elements *)
 G.
          (* type of exponents *)
 Ζ,
         (* group generator *)
 g,
 exp, (* exponentiation function *)
 exp', (* exp. func. after transformation *)
 mult, (* func. for exponent multiplication *)
 PCollKey1,(* g^(fresh x) collides with indep. Y *)
 PCollKey2 (* g^(fr. x * fr. y) coll. w/ indep. Y *)
).
```

The macro defines the exponentiation function, a group generator, and equations for exponent multiplication. An extract:

```
fun exp(G, Z): G.
const g: G.
```

```
fun mult(Z, Z): Z.
equation builtin commut(mult).
```

```
equation forall a:G, x:Z, y:Z;
exp(exp(a, x), y) = exp(a, mult(x, y)).
```

Assumptions like CDH, DDH, GDH, ... must be instantiated with a separate macro. We use CDH, indicating the previously defined group:

```
proba pCDH. (* probability of breaking CDH in G *)
expand CDH(G, Z, g, exp, exp', mult, pCDH).
```

This macro implements a multi-key version of the version presented on the slides.

Semantics of the Security Queries

Definition: Key Secrecy for k_A (and similar k_B) ...

... if an adversary has a negligible probability of distinguishing keys k_A from uniformly random bitstrings of same length:

[1]

Definition: Key Secrecy for k_A (and similar k_B) ...

... if an adversary has a negligible probability of distinguishing keys k_A from uniformly random bitstrings of same length:

$$\begin{split} \mathsf{Adv}^{\textit{key-secrecy,KA}}_{\mathsf{signedDH}}(\mathcal{A}) = & | \mathsf{Pr}\left[\mathcal{G}_{\textit{real}}(\mathcal{A}) \Rightarrow 1\right] \\ & - \mathsf{Pr}\left[\mathcal{G}_{\textit{random}}(\mathcal{A}) \Rightarrow 1\right]| \end{split}$$

- where \mathcal{G}_{real} is the original game (the initial game modeled in CryptoVerif), and
- in *G*_{random} (implicitly reasoned about by CryptoVerif), the keys *k*_A are replaced by independent uniformly random bitstrings of the same length.

This is different from usual pen-and-paper security notions where there is only one test session; here, all (honest) sessions are test sessions!

Definition: Authentication of A (and similar for B) ...

 \ldots if an adversary has a negligible probability of producing a sequence of events that violates the correspondence property:

... if an adversary has a negligible probability of producing a sequence of events that violates the correspondence property:

$$\begin{aligned} \mathsf{Adv}^{auth,A}_{\mathsf{signedDH}}(\mathcal{A}) &= \\ \mathsf{Pr} \left[\begin{array}{c} \mathcal{A}^{Ostart,OA\cdot,OB\cdot,Opki,OH} : \mathcal{A} \text{ produces a sequence of events} \\ \text{such that not every } \mathsf{end}_B(\mathcal{A},\mathcal{B},g^a,g^b) \text{ is preceeded} \\ \text{by a distinct } \mathsf{end}_\mathcal{A}(\mathcal{A},\mathcal{B},g^a,g^b) \end{aligned} \right] \end{aligned}$$

```
(* It's your turn *)
```

You should follow *instructions-practical-session-2.pdf* at: https://github.com/charlie-j/summer-school-2023/

Feel free to refer to the cheatsheet, and to the slides of both sessions, and to ask questions!

Backup Slides

Interactive Mode

Include interactive in the proof environment to start the interactive mode:

```
proof {
    interactive
}
```

- out_game "filename" outputs the current game. Use a .ocv extension such that your editor highlights the syntax.
- crypto assumption(function) applies the assumption to the function. Example: crypto rom(hash)
- success tries to prove the queries
- simplify tries to simplify the current game
- quit leaves interactive mode and continues non-interactively.
- $\bullet~\mbox{Ctrl+D}$ ends the programme