
Tamarin tutorial afternoon:

More accurate/larger models

Cas Cremers

1

2

Research directions

Reality Computational Symbolic

3

Research directions

Reality Computational Symbolic

4

Research directions

Reality Computational Symbolic

Precision

5

Research directions

Reality Computational Symbolic
Scaling and
automation

Precision

Two things that stuck in the back of my head

6

Around 2006: Duplicate Signature Key Selection (DSKS) attacks

Given any (e.g. RSA) signature, you can create a second key pair whose
verification key also verifies that same signature??
(Related: unique ownership)

Around 2014: Small subgroups

Diffie-Hellman protocols expect to receive an element of a prime order group, but
often don't check this. This is usually not a problem?
Bharghavan et. al. make a basic model in ProVerif for channel bindings work.

2016

7

Let's write a paper!

"Better Dolev-Yao abstractions of
cryptographic primitives"

Plan:

- Revisit all Dolev-Yao primitives
(signatures, exponentiation, encryption)

- Make better versions
- Submit
- Profit!!

Let's start with the easiest thing, signatures

2017

8

Let's write a paper!

"Better Dolev-Yao abstractions of
cryptographic primitives"

After months of work:

signatures alone are a paper

2017

9

Let's write three papers!

"Signatures"
"Diffie-Hellman"
"Authenticated Encryption"

Signatures

10

History of subtle signature properties

1999: Key Substitution [Blake-Wilson, Menezes]

Given sig, pk, and msg:
Calculate (sk’,pk’) such that (sig,msg,pk’) verifies

11

History of subtle signature properties

1999: Key Substitution [Blake-Wilson, Menezes]

Given sig, pk, and msg:
Calculate (sk’,pk’) such that (sig,msg,pk’) verifies

2000: Message-key Substitution [Baek, Kim]

Given sig,pk,msg, and msg’:

Calculate (sk’,pk’) such that (sig,msg’,pk’) verifies

12

Traditional Symbolic Signatures

13

verify(sign(A,DATA),DATA,pk(A)) = true

The Signature

The Message

The Signer

The Result

First published in 2001, used by all contemporary tools

verify/2, sign/2, pk/1

14

Vf(s,m,pk)

?

? ?

pk produced from Gen Otherwise

s produced from
sk or sig(sk,m)

Otherwise

verify(sign(A,DATA),DATA,pk(A)) = true

15

Vf(s,m,pk)

?

True ?

pk produced from Gen Otherwise

s produced from
sk or sig(sk,m)

Otherwise

verify(sign(A,DATA),DATA,pk(A)) = true

16

Vf(s,m,pk)

?

True False

pk produced from Gen Otherwise

s produced from
sk or sig(sk,m)

Otherwise

verify(sign(A,DATA),DATA,pk(A)) = true

17

Vf(s,m,pk)

False

True False

pk produced from Gen Otherwise

s produced from
sk or sig(sk,m)

Otherwise

verify(sign(A,DATA),DATA,pk(A)) = true

18

No Conservative Exclusive Ownership

Given s,pk,m with

 verify(s,m,pk) = true

Calculate sk’,pk’ such that

verify(s,m,pk’) = true

First Reported: 1999 (as DSKS)

Applies to: RSA-PKCSv1.5, RSS-PSS, DSA, ECDSA with Free BP

19

No Destructive Exclusive Ownership

Given s,pk,m,m’ with

 verify(s,m,pk) = true

Calculate sk’,pk’ such that

verify(s,m’,pk’) = true

First Reported: 2005

Applies to: RSA-PKCSv1.5, RSS-PSS, DSA, ECDSA with Free BP

20

Colliding

21

Given m,m’, calculate sk,pk,s such that

verify(s,m ,pk) = true

verify(s,m’,pk) = true

Reported: 2002

Applies to: ECDSA, Ed25519

Re-Signing

Given s,pk and sk’,pk’ with

 verify(s,m,pk) = true

Calculate s’ such that

verify(s’,m,pk’) = true

Applies to: RSA-PKCSv1.5, RSA-PSS

22

Malleability

Given s,pk,m with

 verify(s,m,pk) = true

Calculate s’ such that

verify(s’,m,pk) = true

Reported: 2002

Applies to: ECDSA, Ed25519

23

Prevalence

24

Proven Absent

Present

Unknown

Simplified table from [JCCS2019] ACM CCS 2019: Seems Legit: Automated Analysis of Subtle Attacks on Protocols that Use
Signatures

[64] Pornin, T., & Stern, J. P. (2005). [26] Blake-Wilson, S., & Menezes, A. (1999). [59] Menezes, A., & Smart, N. (2001).
[47] Günther, F., & Poettering, B. (2017). [69] Vaudenay, S. (2003). [67] Stern, Jacques, et al. (2002) [19] Bernstein, Daniel J., et al
(2012).

Improving the Symbolic Model

Re-signing

resign(sign(m,sk1),sk2) = sign(m,sk2)

Malleability

mutate(sign(m,r1,sk),r2)) = sign(m,r2,sk)

25

Improving the Symbolic Model

CEO:

verify(sign(m,sk),m,pk(CEOgen(sign(m,sk)))) = true

DEO:

verify(sign(m1,sk),m2,pk(DEOgen(sign(m1,sk),m2))) = true

Colliding:

verify(sign(n,x),m,pk(weak(x)))) = true

26

27

Vf(s,m,pk)

?

True False

pk produced from Gen Otherwise

s produced from
sk or sig(sk,m)

Otherwise

A Better Way?

28

Vf(s,m,pk)

Adversary
Decides

True False

pk produced from Gen Otherwise

s produced from
sk or sig(sk,m)

Otherwise

A Better Way?

Restrictions

● A protocol is made of steps
● Restrictions prevent a step from “triggering”
● Guarded Fragment of First Order Logic with Timepoints
● Only act on terms, not subterms

Examples:

● ∀ x,y Eq (x,y) => x = y
● ∀ x,y InEq(x,y) => x != y
● ∀ t1,t2 OnlyOnce() @ t1 & OnlyOnce() @ t2 => t1 = t2

29

Lifting from Terms to Traces

We remove verify and introduce new step labels:

verified(sig,m,pk,result), result {true,false}∈

honest(pk)

Any step where an honest party generates a public key, we label it with ‘honest.’

Now we can use restrictions to control when the ‘verified’ event can occur.

30

S1 S2
verified(sig,m,pk,true)

Step X

Restrictions

Correctness:

Honest(pk(a)) & Verified(sign(m,r,a),m,pk(a),False) => 丄

31

Restrictions

Correctness:

Honest(pk(a)) & Verified(sign(m,r,a),m,pk(a),False) => 丄

Unforgeability:

Honest(pk(a)) & Verified(s,m,pk(a),true) => s = sign(m,r,a)

32

Restrictions

Correctness:

Honest(pk(a)) & Verified(sign(m,r,a),m,pk(a),False) => 丄

Unforgeability:

Honest(pk(a)) & Verified(s,m,pk(a),true) => s = sign(m,r,a)

Consistency:

Verified(s,m,pk(a),r1) & Verified(s,m,pk(a),r2) => r1 = r2

33

Case studies

34

Protocol

Previous
verification

Year Methodology

X.509 Mutual Auth 2006 ProVerif

WS Request-
Response

2008 F# → ProVerif

STS-MAC-fix1 2012 Tamarin

STS-MAC-fix2 2012 Tamarin

DRKey & OPT 2014 Coq

ACME Draft 4 2017 ProVerif

Case studies

35

Protocol

Previous
verification

New Tamarin analysis [JCCS2019]

Year Methodology Property Time (s) Attack

X.509 Mutual Auth 2006 ProVerif
Correlation &
Secrecy

5 NEW ATTACKWS Request-
Response

2008 F# → ProVerif

STS-MAC-fix1 2012 Tamarin Authentication 35 Rediscovered
manual attack

STS-MAC-fix2 2012 Tamarin Authentication 68 Rediscovered
manual attack

DRKey & OPT 2014 Coq Authentication 2640 NEW ATTACK

ACME Draft 4 2017 ProVerif DNS Validation 53 Rediscovered
manual attack

WS Security X.509 Mutual Authentication

36

Goals:
Transmit a request REQ and its response RESP,
Authenticate both parties,
Ensure the response matches the request.

Goals:
Transmit a request REQ and its response RESP,
Authenticate both parties,
Ensure the response matches the request.

WS Security X.509 Mutual Authentication

37

Timestamp

Symmetric Encryption
Public Key Encryption

Goals:
Transmit a request REQ and its response RESP,
Authenticate both parties,
Ensure the response matches the request.

Goals:
Transmit a request REQ and its response RESP,
Authenticate both parties,
Ensure the response matches the request.

WS Security X.509 Mutual Authentication

38

“Signature Confirmation”

Signing a signature, binding the
response to the request

“Signature Confirmation”

Signing a signature, binding the
response to the request

Goals:
Transmit a request REQ and its response RESP,
Authenticate both parties,
Ensure the response matches the request.

Goals:
Transmit a request REQ and its response RESP,
Authenticate both parties,
Ensure the response matches the request.

39

Victim

40

Victim

41

Victim

42

Victim

43

Victim

44

Victim

45

The responder is replying to the
attackers request, but the initiator still
accepts this response.

The responder is replying to the
attackers request, but the initiator still
accepts this response.

Victim

46

The responder is replying to the
attackers request, but the initiator still
accepts this response.

The responder is replying to the
attackers request, but the initiator still
accepts this response.

Signature Confirmation doesn’t
work. Signatures don’t identify
unique messages or public keys.

Signature Confirmation doesn’t
work. Signatures don’t identify
unique messages or public keys.

Victim

47

The responder is replying to the
attackers request, but the initiator still
accepts this response.

The responder is replying to the
attackers request, but the initiator still
accepts this response.

Attacker violates the guarantees of the Initiator:
- Can modify REQ to REQm (or leave unchanged)
- Learns k2 and content of RESP (but not REQ)
- There is no Responder that thinks they are talking to this Initiator

Attacker violates the guarantees of the Initiator:
- Can modify REQ to REQm (or leave unchanged)
- Learns k2 and content of RESP (but not REQ)
- There is no Responder that thinks they are talking to this Initiator

Signature Confirmation doesn’t
work. Signatures don’t identify
unique messages or public keys.

Signature Confirmation doesn’t
work. Signatures don’t identify
unique messages or public keys.

Victim

Other primitives example:
Diffie-Hellman

48

Diffie-Hellman

49

Investigation:

● Prime order groups / curves are encoded in various complex ways
● Lead to subtly different classes of behaviours

○ Prime order groups (= traditional DY model)
○ "Nearly-prime" order groups (small cogroup)
○ Composite groups
○ Single coordinate ladders (for EC)
○ General invalid curve points (for EC)

Diffie-Hellman

50

Investigation:

● Prime order groups / curves are encoded in various complex ways
● Lead to subtly different classes of behaviours

○ Prime order groups (= traditional DY model)
○ "Nearly-prime" order groups (small cogroup)
○ Composite groups
○ Single coordinate ladders (for EC)
○ General invalid curve points (for EC)

We give symbolic models for each, and for the implemented "checks"

Tamarin finds new attacks automatically
Go's standard crypto library will get new API
Better checks in Cloudflare's standard libraries

Stepping back

51

Sometimes ideas escalate!

52

Automation
research

Reading
About DSKS

Hearing about
Small subgroups

Sometimes ideas escalate!

53

Automation
research

Reading
About DSKS

Hearing about
Small subgroups

Better
Signatures

Better
Diffie-Hellman

Sometimes ideas escalate!

54

Automation
research

Reading
About DSKS

Hearing about
Small subgroups

Better
Signatures

Better
Diffie-Hellman

Better
Hashes

Better
Authenticated
Encryption

Sometimes ideas escalate!

55

Automation
research

Reading
About DSKS

Hearing about
Small subgroups

Better
Signatures

Better
Diffie-Hellman

Better
Hashes

Better
Authenticated
Encryption

First
ED25519
Proofs

NIST PQ
signatures
+generic fix

Sometimes ideas escalate!

56

Automation
research

Reading
About DSKS

Hearing about
Small subgroups

Better
Signatures

Better
Diffie-Hellman

Better
Hashes

Better
Authenticated
Encryption

First
ED25519
Proofs

NIST PQ
signatures
+generic fix

GO librariesGO libraries

Cloudflare libsCloudflare libs

Sometimes ideas escalate!

57

Automation
research

Reading
About DSKS

Hearing about
Small subgroups

Better
Signatures

Better
Diffie-Hellman

Better
Hashes

Better
Authenticated
Encryption

First
ED25519
Proofs

NIST PQ
signatures
+generic fix

Now listed as
desired properties

GO librariesGO libraries

Cloudflare libsCloudflare libs

Sometimes ideas escalate!

58

Automation
research

Reading
About DSKS

Hearing about
Small subgroups

Better
Signatures

Better
Diffie-Hellman

Better
Hashes

Better
Authenticated
Encryption

First
ED25519
Proofs

NIST PQ
signatures
+generic fix

Now listed as
desired properties

GO librariesGO libraries

Cloudflare libsCloudflare libs

??

Wider question for future developments:

Which attacks are covered by computational protocol proofs, but
cannot be captured symbolically?

59

My original intuition:
Probably there are plenty of examples.

My current intuition:
Not so sure anymore there are many interesting
ones!

My original intuition:
Probably there are plenty of examples.

My current intuition:
Not so sure anymore there are many interesting
ones!

What about larger protocols?
● Case studies can run large too

● Recent example: SPDM 1.2

– 75 rules

– 2500 lines of code

– 40 lemmas

– First CVE automatically found by Tamarin
● Individual modes secure
● Composition completely breaks mutual authentication

for one mode!

● Back to David!

Backup slides

61

Computational protocol proofs would capture this, right?

In general, no

How it works instead in most protocol proofs:

- Setup phase (honestly) generates key pairs for every party
- Adversary can corrupt some of these parties to learn private keys
- The analysis only considers public keys from the setup phase

Consequence:

- The proof gives no guarantees for maliciously generated keys

62

At least modern schemes like Ed25519 satisfy these properties?

- Ed25519-Original:
- Provides only existential unforgeability
- Does not provide guarantees for maliciously generated public keys (as documented)

- Ed25519-IETF:
- Provides some guarantees, notably strong unforgeability, but not all

- Ed25519-LibSodium:
- Provides the strongest guarantees including wrt malicious keys

Oh, there is also the NIST Competition for post-quantum secure signature
schemes. Surely they are fine, freshly designed!

Modern signature schemes

63

[BCJZ2021] IEEE S&P 2021: Ed25519 Signature Schemes: Theory and Practice

To our surprise, previous NIST competition rounds
only require existential unforgeability

We show a generic BUFF transform to provably achieve all these properties

NIST Post-Quantum Signature competition

64

[CDFFJ2021] IEEE S&P 2021: BUFFing signature schemes beyond unforgeability and the case of post-quantum
signatures

65

Automated Certificate Issuance, deployed in 2015

Over 1 million certificates issued every day!

Idea

● Proof of Domain Ownership
● Challenge Response Protocol
● Prove you control the DNS Records for a website

66

11th
August

15th
September

April-May 2015

67

Challenge

Response

Verify

68

Definition: Unforgeability

Existential unforgeability under an adaptive chosen message attack

1. The referee generates a keypair and outputs the public key
2. The adversary may (adaptively)

ask the referee for a signature
on a message of the adversary’s choice.

3. The adversary wins if
they can produce a message and signature pair that passes Verify,
but the adversary never submitted the message in step 2.

Introduced1 in 1988, widely accepted as the standard definition.

69
1 Goldwasser, S., Micali, S., & Rivest, R. L. (1988)

Note:
Definition says nothing about

what should hold for maliciously

generated keys

Note:
Definition says nothing about

what should hold for maliciously

generated keys

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Two things that stuck in the back of my head
	2016
	2017
	2017
	Signatures
	History of subtle signature properties
	History of subtle signature properties
	Traditional Symbolic Signatures
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	No Conservative Exclusive Ownership
	No Destructive Exclusive Ownership
	Colliding
	Re-Signing
	Malleability
	Prevalence
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Case studies
	Case studies
	WS Security X.509 Mutual Authentication
	WS Security X.509 Mutual Authentication
	WS Security X.509 Mutual Authentication
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Other primitives example: Diffie-Hellman
	Diffie-Hellman
	Diffie-Hellman
	Stepping back
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Sometimes ideas escalate!
	Slide 59
	Slide 60
	Backup slides
	Computational protocol proofs would capture this, right?
	Modern signature schemes
	NIST Post-Quantum Signature competition
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Definition: Unforgeability

