
Tamarin tutorial afternoon:

More accurate/larger models

Cas Cremers
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Research directions

Reality Computational Symbolic
Scaling and
automation

Precision



Two things that stuck in the back of my head
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Around 2006: Duplicate Signature Key Selection (DSKS) attacks

Given any (e.g. RSA) signature, you can create a second key pair whose 
verification key also verifies that same signature??
(Related: unique ownership)

Around 2014: Small subgroups

Diffie-Hellman protocols expect to receive an element of a prime order group, but 
often don't check this. This is usually not a problem?
Bharghavan et. al. make a basic model in ProVerif for channel bindings work.



2016
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Let's write a paper!

"Better Dolev-Yao abstractions of 
cryptographic primitives"

Plan:

- Revisit all Dolev-Yao primitives 
(signatures, exponentiation, encryption)

- Make better versions
- Submit
- Profit!!

Let's start with the easiest thing, signatures



2017
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Let's write a paper!

"Better Dolev-Yao abstractions of 
cryptographic primitives"

After months of work: 

signatures alone are a paper



2017
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Let's write three papers!

"Signatures"
"Diffie-Hellman"
"Authenticated Encryption"



Signatures
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History of subtle signature properties

1999: Key Substitution [Blake-Wilson, Menezes]

Given sig, pk, and msg:
Calculate (sk’,pk’) such that (sig,msg,pk’) verifies
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History of subtle signature properties

1999: Key Substitution [Blake-Wilson, Menezes]

Given sig, pk, and msg:
Calculate (sk’,pk’) such that (sig,msg,pk’) verifies

2000: Message-key Substitution [Baek, Kim]

Given sig,pk,msg, and msg’:

Calculate (sk’,pk’) such that (sig,msg’,pk’) verifies
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Traditional Symbolic Signatures
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verify(sign(A,DATA),DATA,pk(A)) = true

The Signature

The Message

The Signer

The Result

First published in 2001, used by all contemporary tools

verify/2, sign/2, pk/1
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Vf(s,m,pk)

?

? ?

pk produced from Gen Otherwise

s produced from 
sk or sig(sk,m)

Otherwise

verify(sign(A,DATA),DATA,pk(A)) = true
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Vf(s,m,pk)

False

True False

pk produced from Gen Otherwise

s produced from 
sk or sig(sk,m)

Otherwise

verify(sign(A,DATA),DATA,pk(A)) = true
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No Conservative Exclusive Ownership 

Given s,pk,m with

 verify(s,m,pk) = true

Calculate sk’,pk’ such that

verify(s,m,pk’) = true

First Reported: 1999 (as DSKS)

Applies to: RSA-PKCSv1.5, RSS-PSS, DSA, ECDSA with Free BP
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No Destructive Exclusive Ownership 

Given s,pk,m,m’ with

 verify(s,m,pk) = true

Calculate sk’,pk’ such that

verify(s,m’,pk’) = true

First Reported: 2005

Applies to: RSA-PKCSv1.5, RSS-PSS, DSA, ECDSA with Free BP
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Colliding
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Given m,m’, calculate sk,pk,s such that

verify(s,m ,pk) = true

verify(s,m’,pk) = true

Reported: 2002

Applies to: ECDSA, Ed25519



Re-Signing

Given s,pk and sk’,pk’ with

 verify(s,m,pk) = true

Calculate s’ such that

verify(s’,m,pk’) = true

Applies to: RSA-PKCSv1.5, RSA-PSS
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Malleability 

Given s,pk,m with

 verify(s,m,pk) = true

Calculate s’ such that

verify(s’,m,pk) = true

Reported: 2002

Applies to: ECDSA, Ed25519
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Prevalence
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Proven Absent

Present

Unknown

Simplified table from [JCCS2019] ACM CCS 2019: Seems Legit: Automated Analysis of Subtle Attacks on Protocols that Use 
Signatures

[64] Pornin, T., & Stern, J. P. (2005).  [26] Blake-Wilson, S., & Menezes, A. (1999). [59] Menezes, A., & Smart, N. (2001).
[47] Günther, F., & Poettering, B. (2017). [69] Vaudenay, S. (2003). [67] Stern, Jacques, et al. (2002) [19] Bernstein, Daniel J., et al 
(2012).



Improving the Symbolic Model

Re-signing

resign(sign(m,sk1),sk2) = sign(m,sk2)

Malleability

mutate(sign(m,r1,sk),r2)) = sign(m,r2,sk)
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Improving the Symbolic Model

CEO:   

verify(sign(m,sk),m,pk(CEOgen(sign(m,sk)))) = true

DEO:

verify(sign(m1,sk),m2,pk(DEOgen(sign(m1,sk),m2))) = true

Colliding: 

verify(sign(n,x),m,pk(weak(x)))) = true
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Vf(s,m,pk)

?

True False

pk produced from Gen Otherwise

s produced from 
sk or sig(sk,m)

Otherwise

A Better Way?
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Vf(s,m,pk)

Adversary 
Decides

True False

pk produced from Gen Otherwise

s produced from 
sk or sig(sk,m)

Otherwise

A Better Way?



Restrictions

● A protocol is made of steps 
● Restrictions prevent a step from “triggering” 
● Guarded Fragment of First Order Logic with Timepoints
● Only act on terms, not subterms

Examples:

●  ∀ x,y Eq  (x,y) => x  = y
●  ∀ x,y InEq(x,y) => x != y 
●  ∀ t1,t2 OnlyOnce() @ t1 & OnlyOnce() @ t2 => t1 = t2 
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Lifting from Terms to Traces

We remove verify  and introduce new step labels:

verified(sig,m,pk,result),  result  {true,false}∈

honest(pk)

Any step where an honest party generates a public key, we label it with ‘honest.’

Now we can use restrictions to control when the ‘verified’ event can occur. 
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S1 S2
verified(sig,m,pk,true)

Step X



Restrictions

Correctness: 

Honest(pk(a)) & Verified(sign(m,r,a),m,pk(a),False) => 丄
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Restrictions

Correctness: 

Honest(pk(a)) & Verified(sign(m,r,a),m,pk(a),False) => 丄

Unforgeability:

Honest(pk(a)) & Verified(s,m,pk(a),true) => s = sign(m,r,a)
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Restrictions

Correctness: 

Honest(pk(a)) & Verified(sign(m,r,a),m,pk(a),False) => 丄

Unforgeability:

Honest(pk(a)) & Verified(s,m,pk(a),true) => s = sign(m,r,a)

Consistency: 

Verified(s,m,pk(a),r1) & Verified(s,m,pk(a),r2) => r1 = r2
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Case studies
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Protocol

Previous 
verification

Year Methodology

X.509 Mutual Auth 2006 ProVerif

WS Request-
Response

2008 F# → ProVerif

STS-MAC-fix1 2012 Tamarin

STS-MAC-fix2 2012 Tamarin

DRKey & OPT 2014 Coq

ACME Draft 4 2017 ProVerif



Case studies
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Protocol

Previous 
verification

New Tamarin analysis [JCCS2019]

Year Methodology Property Time (s) Attack

X.509 Mutual Auth 2006 ProVerif
Correlation &
Secrecy

5 NEW ATTACKWS Request-
Response

2008 F# → ProVerif

STS-MAC-fix1 2012 Tamarin Authentication 35 Rediscovered
manual attack

STS-MAC-fix2 2012 Tamarin Authentication 68 Rediscovered
manual attack

DRKey & OPT 2014 Coq Authentication 2640 NEW ATTACK

ACME Draft 4 2017 ProVerif DNS Validation 53 Rediscovered
manual attack



WS Security X.509 Mutual Authentication
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Goals:
Transmit a request REQ and its response RESP, 
Authenticate both parties,
Ensure the response matches the request.

Goals:
Transmit a request REQ and its response RESP, 
Authenticate both parties,
Ensure the response matches the request.



WS Security X.509 Mutual Authentication
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Timestamp

Symmetric Encryption
Public Key Encryption

Goals:
Transmit a request REQ and its response RESP, 
Authenticate both parties,
Ensure the response matches the request.

Goals:
Transmit a request REQ and its response RESP, 
Authenticate both parties,
Ensure the response matches the request.



WS Security X.509 Mutual Authentication
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“Signature Confirmation” 

Signing a signature, binding the 
response to the request

“Signature Confirmation” 

Signing a signature, binding the 
response to the request

Goals:
Transmit a request REQ and its response RESP, 
Authenticate both parties,
Ensure the response matches the request.

Goals:
Transmit a request REQ and its response RESP, 
Authenticate both parties,
Ensure the response matches the request.
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Victim
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Victim
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Victim
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The responder is replying to the 
attackers request, but the initiator still 
accepts this response.

The responder is replying to the 
attackers request, but the initiator still 
accepts this response.

Victim
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accepts this response.

The responder is replying to the 
attackers request, but the initiator still 
accepts this response.

Signature Confirmation doesn’t 
work. Signatures don’t identify 
unique messages or public keys.

Signature Confirmation doesn’t 
work. Signatures don’t identify 
unique messages or public keys.

Victim
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The responder is replying to the 
attackers request, but the initiator still 
accepts this response.

The responder is replying to the 
attackers request, but the initiator still 
accepts this response.

Attacker violates the guarantees of the  Initiator:
- Can modify REQ to REQm (or leave unchanged)
- Learns k2 and content of RESP (but not REQ)
- There is no Responder that thinks they are talking to this Initiator

Attacker violates the guarantees of the  Initiator:
- Can modify REQ to REQm (or leave unchanged)
- Learns k2 and content of RESP (but not REQ)
- There is no Responder that thinks they are talking to this Initiator

Signature Confirmation doesn’t 
work. Signatures don’t identify 
unique messages or public keys.

Signature Confirmation doesn’t 
work. Signatures don’t identify 
unique messages or public keys.

Victim



Other primitives example:
Diffie-Hellman
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Diffie-Hellman
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Investigation:

● Prime order groups / curves are encoded in various complex ways
● Lead to subtly different classes of behaviours

○ Prime order groups (= traditional DY model)
○ "Nearly-prime" order groups (small cogroup)
○ Composite groups
○ Single coordinate ladders (for EC)
○ General invalid curve points (for EC)



Diffie-Hellman
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Investigation:

● Prime order groups / curves are encoded in various complex ways
● Lead to subtly different classes of behaviours

○ Prime order groups (= traditional DY model)
○ "Nearly-prime" order groups (small cogroup)
○ Composite groups
○ Single coordinate ladders (for EC)
○ General invalid curve points (for EC)

We give symbolic models for each, and for the implemented "checks"

Tamarin finds new attacks automatically
Go's standard crypto library will get new API
Better checks in Cloudflare's standard libraries



Stepping back
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Sometimes ideas escalate!
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Automation
research

Reading
About DSKS

Hearing about 
Small subgroups
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56

Automation
research

Reading
About DSKS

Hearing about 
Small subgroups

Better
Signatures

Better
Diffie-Hellman

Better
Hashes

Better
Authenticated
Encryption

First
ED25519
Proofs

NIST PQ 
signatures
+generic fix

GO librariesGO libraries

Cloudflare libsCloudflare libs



Sometimes ideas escalate!
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Automation
research

Reading
About DSKS

Hearing about 
Small subgroups

Better
Signatures

Better
Diffie-Hellman

Better
Hashes

Better
Authenticated
Encryption

First
ED25519
Proofs

NIST PQ 
signatures
+generic fix

Now listed as 
desired properties

GO librariesGO libraries

Cloudflare libsCloudflare libs



Sometimes ideas escalate!
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Automation
research

Reading
About DSKS

Hearing about 
Small subgroups

Better
Signatures

Better
Diffie-Hellman

Better
Hashes

Better
Authenticated
Encryption

First
ED25519
Proofs

NIST PQ 
signatures
+generic fix

Now listed as 
desired properties

GO librariesGO libraries

Cloudflare libsCloudflare libs

??



Wider question for future developments:

Which attacks are covered by computational protocol proofs, but 
cannot be captured symbolically?
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My original intuition:
Probably there are plenty of examples.

My current intuition:
Not so sure anymore there are many interesting 
ones!

My original intuition:
Probably there are plenty of examples.

My current intuition:
Not so sure anymore there are many interesting 
ones!



What about larger protocols?
● Case studies can run large too

● Recent example: SPDM 1.2

– 75 rules

– 2500 lines of code

– 40 lemmas

– First CVE automatically found by Tamarin
● Individual modes secure
● Composition completely breaks mutual authentication 

for one mode!

● Back to David!



Backup slides
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Computational protocol proofs would capture this, right?

In general, no

How it works instead in most protocol proofs:

- Setup phase (honestly) generates key pairs for every party
- Adversary can corrupt some of these parties to learn private keys
- The analysis only considers public keys from the setup phase

Consequence:

- The proof gives no guarantees for maliciously generated keys
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At least modern schemes like Ed25519 satisfy these properties?

- Ed25519-Original:
- Provides only existential unforgeability
- Does not provide guarantees for maliciously generated public keys (as documented)

- Ed25519-IETF:
- Provides some guarantees, notably strong unforgeability, but not all

- Ed25519-LibSodium:
- Provides the strongest guarantees including wrt malicious keys

Oh, there is also the NIST Competition for post-quantum secure signature 
schemes. Surely they are fine, freshly designed!

Modern signature schemes

63

[BCJZ2021] IEEE S&P 2021: Ed25519 Signature Schemes: Theory and Practice



To our surprise, previous NIST competition rounds 
only require existential unforgeability

We show a generic BUFF transform to provably achieve all these properties

NIST Post-Quantum Signature competition

64

[CDFFJ2021] IEEE S&P 2021: BUFFing signature schemes beyond unforgeability and the case of post-quantum 
signatures



65

Automated Certificate Issuance, deployed in 2015

Over 1 million certificates issued every day!

Idea

● Proof of Domain Ownership
● Challenge Response Protocol
● Prove you control the DNS Records for a website
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11th 
August

15th 
September

April-May 2015
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Challenge

Response

Verify
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Definition: Unforgeability 

Existential unforgeability under an adaptive chosen message attack

1. The referee generates a keypair and outputs the public key
2. The adversary may (adaptively) 

ask the referee for a signature 
on a message of the adversary’s choice. 

3. The adversary wins if 
they can produce a message and signature pair that passes Verify, 
but the adversary never submitted the message in step 2. 

Introduced1 in 1988, widely accepted as the standard definition.

69
1 Goldwasser, S., Micali, S., & Rivest, R. L. (1988)

Note:
Definition says nothing about 

what should hold for maliciously 

generated keys

Note:
Definition says nothing about 

what should hold for maliciously 

generated keys
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