
 1

Cas Cremers
Email: cremers@cispa.de

All materials under CC-BY license
Slides designed by Cas Cremers, David Basin, Jannik Dreier, and Ralf Sasse

Sources:
Tamarin picture used with chicken hat by Brocken Inaglory
All other Tamarin photographs by Martin Dehnel-Wild
Other photos, graphics, and chicken hats by Cas Cremers

June 2023

Modeling in TamarinModeling in Tamarin

mailto:cremers@cispa.de

 2

● Formal methods/symbolic analysis
– Co-developer of Scyther & Tamarin

● Applied cryptography
– Security models & proof techniques

● Standardization and real-world applications
– TLS 1.3, IEEE 802.11, ISO, SPDM, …
– Secure messaging (contributed to MLS)
– DP3T / Corona Warn App

● Looking to hire phd & postdocs!

About me

DemoDemo

 4

Demo

 5

Demo

 6

Demo

 7

Tamarin: high-level

●Modeling protocol & adversary done using
multiset rewriting
− Specifies transition system; induces set of traces

●Property specification using fragment of first-
order logic
− Specifies “good” traces

●Tamarin tries to
− provide proof that all system traces are good, or

− construct a counterexample trace of the system
(attack)

Modeling in TamarinModeling in Tamarin

 9

Modeling in Tamarin

● Multiset rewriting; surprisingly similar to “oracles”

● Basic ingredients:
– Terms (think “messages”)
– Facts (think “sticky notes on the fridge”)
– Special facts: Fr(t), In(t), Out(t), K(t)

● State of system is a multiset of facts
– Initial state is the empty multiset
– Rules specify the transition rules (“moves”)

● Rules are of the form:
l --> r
l --[a]-> r

 10

The model

● Term algebra
– enc(_,_), dec(_,_),

h(_,_),
^, _-1, _*_, 1, …

 11

The model

● Term algebra
– enc(_,_), dec(_,_),

h(_,_),
^, _-1, _*_, 1, …

● Equational theory
– dec(enc(m,k),k) =E m,
– (x^y)^z =E x^(y*z),
– (x-1)-1 =E x, …

 12

The model

● Term algebra
– enc(_,_), dec(_,_),

h(_,_),
^, _-1, _*_, 1, …

● Equational theory
– dec(enc(m,k),k) =E m,
– (x^y)^z =E x^(y*z),
– (x-1)-1 =E x, ...

● Facts
– F(t1,...,tn)

 13

The model

● Term algebra
– enc(_,_), dec(_,_),

h(_,_),
^, _-1, _*_, 1, …

● Equational theory
– dec(enc(m,k),k) =E m,
– (x^y)^z =E x^(y*z),
– (x-1)-1 =E x, ...

● Facts
– F(t1,...,tn)

● Transition system
– State: multiset of facts
– Rules: l –[a]→ r

 14

The model

● Term algebra
– enc(_,_), dec(_,_),

h(_,_),
^, _-1, _*_, 1, …

● Equational theory
– dec(enc(m,k),k) =E m,
– (x^y)^z =E x^(y*z),
– (x-1)-1 =E x, ...

● Facts
– F(t1,...,tn)

● Transition system
– State: multiset of facts
– Rules: l –[a]→ r

● Tamarin-specific
– Built-in Dolev-Yao

attacker rules
● In(), Out(), K()

 15

The model

● Term algebra
– enc(_,_), dec(_,_),

h(_,_),
^, _-1, _*_, 1, …

● Equational theory
– dec(enc(m,k),k) =E m,
– (x^y)^z =E x^(y*z),
– (x-1)-1 =E x, ...

● Facts
– F(t1,...,tn)

● Transition system
– State: multiset of facts
– Rules: l –[a]→ r

● Tamarin-specific
– Built-in Dolev-Yao

attacker rules
● In(), Out(), K()

– Special Fresh rule:
● [] --[]--> [Fr(x)]

– With additional
constraints on systems
such that x unique

 16

Semantics

● Transition relation
S –[a]→

R
((S \# l) È# r)

where
● l –[a]→ r is a ground instance of a rule in R, and
● l Í# S wrt the equational theory

 17

Semantics

● Transition relation
S –[a]→

R
((S \# l) È# r)

where
● l –[a]→ r is a ground instance of a rule in R, and
● l Í# S wrt the equational theory

● Executions
Exec(R) = { [] –[a

1
]→ … –[a

n
]→ S

n

| "n . Fr(n) appears only once on right-hand side
 of rule }

 18

Semantics

● Transition relation
S –[a]→

R
((S \# l) È# r)

where
● l –[a]→ r is a ground instance of a rule in R, and
● l Í# S wrt the equational theory

● Executions
Exec(R) = { [] –[a

1
]→ … –[a

n
]→ S

n

| "n . Fr(n) appears only once on right-hand
 side of rule }

● Traces
Traces(R) = { [a

1
,…,a

n
] | [] –[a

1
]→ … –[a

n
]→ S

n
Î Exec(R) }

 19

Semantics: example 1

● Rules
– rule 1: [] –[Init()]→ [A('5')]
– rule 2: [A(x)] –[Step(x)]→ [B(x)]

‘c’ constant

 20

Semantics: example 1

● Rules
– rule 1: [] –[Init()]→ [A('5')]
– rule 2: [A(x)] –[Step(x)]→ [B(x)]

● Execution example
● []
● –[Init()]→ [A('5')]
● –[Init()]→ [A('5'), A('5')]
● –[Step('5')]→ [A('5'), B('5')]

‘c’ constant

 21

Semantics: example 1

● Rules
– rule 1: [] –[Init()]→ [A('5')]
– rule 2: [A(x)] –[Step(x)]→ [B(x)]

● Execution example
● []
● –[Init()]→ [A('5')]
● –[Init()]→ [A('5'), A('5')]
● –[Step('5')]→ [A('5'), B('5')]

● Corresponding trace
● [Init(), Init(), Step('5')]

‘c’ constant

 22

Semantics: example 2 (persistent facts)

● Rules
– rule1: [] –[Init()]→ [!C('ok'), D('1')]
– rule2: [!C(x), D(y)] –[Step(x,y)]→ [D(h(y))]

‘c’ constant

 23

Semantics: example 2 (persistent facts)

● Rules
– rule1: [] –[Init()]→ [!C('ok'), D('1')]
– rule2: [!C(x), D(y)] –[Step(x,y)]→ [D(h(y))]

● Execution example
● []
● –[Init()]→ [!C('ok'), D('1')]
● –[Step('ok','1')]→ [!C('ok'), D(h('1'))]
● –[Step('ok',h('1'))]→ [!C('ok'), D(h(h('1')))]

‘c’ constant

 24

Semantics: example 2 (persistent facts)

● Rules
– rule1: [] –[Init()]→ [!C('ok'), D('1')]
– rule2: [!C(x), D(y)] –[Step(x,y)]→ [D(h(y))]

● Execution example
● []
● –[Init()]→ [!C('ok'), D('1')]
● –[Step('ok','1')]→ [!C('ok'), D(h('1'))]
● –[Step('ok',h('1'))]→ [!C('ok'), D(h(h('1')))]

● Corresponding trace
● [Init(), Step('ok', '1'), Step('ok', h('1'))]

‘c’ constant

 25

Tamarin tackles complex interaction with adversary

adversary

controlling

the network

Your protocol modeled
with rewrite rules…..

Server

ClientClient

 26

Tamarin tackles complex interaction with adversary

adversary

controlling

the network
Server

ClientClient

Your protocol modeled with rewrite rules

The NAXOS protocolThe NAXOS protocol

 28

The Naxos protocol
lkA A’s long-term priv. key

g^lkA A’s long-term pub. key

eskA A’s eph. priv. key

 29

The Naxos protocol
lkA A’s long-term priv. key

g^lkA A’s long-term pub. key

eskA A’s eph. priv. key

 30

Modeling Naxos
lkA A’s long-term priv. key

g^lkA A’s long-term pub. key

eskA A’s eph. priv. key

 31

Modeling Naxos

rule Init_1:
 let exI = h1(<~eskI, ~lkI >)
 hkI = 'g'^exI
 in
 [Fr(~eskI)] --> [Out(hkI)]

lkA A’s long-term priv. key

g^lkA A’s long-term pub. key

eskA A’s eph. priv. key

‘c’ constant

~t t has type fresh

 32

Modeling Naxos

rule generate_ltk:
 let pkA = 'g'^~lkA
 in
 [Fr(~lkA)] --> [!Ltk($A, ~lkA), !PK($A, pkA), Out(pkA)]

rule Init_1:
 let exI = h1(<~eskI, ~lkI >)
 hkI = 'g'^exI
 in
 [Fr(~eskI), !Ltk($I, ~lkI)] --> [Out(hkI)]

lkA A’s long-term priv. key

g^lkA A’s long-term pub. key

eskA A’s eph. priv. key

‘c’ constant

~t t has type fresh

$t t has type public

!F F is persistent

 33

Modeling Naxos

rule generate_ltk:
 let pkA = 'g'^~lkA
 in
 [Fr(~lkA)] --> [!Ltk($A, ~lkA), !PK($A, pkA), Out(pkA)]

rule Init_1:
 let exI = h1(<~eskI, ~lkI >)
 hkI = 'g'^exI
 in
 [Fr(~eskI), !Ltk($I, ~lkI)] --> [Out(hkI)]

rule Init_2:
 [In(Y)] --> []

lkA A’s long-term priv. key

g^lkA A’s long-term pub. key

eskA A’s eph. priv. key

‘c’ constant

~t t has type fresh

$t t has type public

!F F is persistent

 34

Modeling Naxos

rule generate_ltk:
 let pkA = 'g'^~lkA
 in
 [Fr(~lkA)] --> [!Ltk($A, ~lkA), !PK($A, pkA), Out(pkA)]

rule Init_1:
 let exI = h1(<~eskI, ~lkI >)
 hkI = 'g'^exI
 in
 [Fr(~eskI), !Ltk($I, ~lkI)] --> [Out(hkI),
 Init_1(~eskI, $I, $R, ~lkI ,hkI)]

rule Init_2:
 [Init_1(~eskI, $I, $R, ~lkI , hkI), In(Y)] --> []

lkA A’s long-term priv. key

g^lkA A’s long-term pub. key

eskA A’s eph. priv. key

‘c’ constant

~t t has type fresh

$t t has type public

!F F is persistent

 35

Property specification

● first order logic interpreted over a trace
– False False

– Equality t1 =E
 t

2

– Timepoint ordering #i < #j
– Timepoint equality #i = #j
– Action at timepoint #i A@#i

 36

Property specification

● l --[a]-> r

● Actions stored as (action) trace
Additionally:
adversary knows facts: K()

lkA A’s long-term priv. key

g^lkA A’s long-term pub. key

eskA A’s eph. priv. key

‘c’ constant

~t t has type fresh

$t t has type public

!F F is persistent

 37

Property specification

● l --[a]-> r

● Actions stored as (action) trace
Additionally:
adversary knows facts: K()

rule Init_2:
 let exI = h1(< ~eskI, ~lkI >),
 key = h2(< Y^~lkI, pkR^exI, Y^exI, $I, $R >)
 in
 [Init_1(~eskI, $I, $R, ~lkI , hkI), In(Y), !Pk($R,pkR)]
 --[Accept(~eskI, $I, $R, key)]-->
 []

lkA A’s long-term priv. key

g^lkA A’s long-term pub. key

eskA A’s eph. priv. key

‘c’ constant

~t t has type fresh

$t t has type public

!F F is persistent

 38

Property specification

● l --[a]-> r

● Actions stored as (action) trace
Additionally:
adversary knows facts: K()

rule Init_2:
 let exI = h1(< ~eskI, ~lkI >),
 key = h2(< Y^~lkI, pkR^exI, Y^exI, $I, $R >)
 in
 [Init_1(~eskI, $I, $R, ~lkI , hkI), In(Y), !Pk($R,pkR)]
 --[Accept(~eskI, $I, $R, key)]-->
 []

Lemma trivial_key_secrecy:
 "(All #i Test A B key. Accept(Test,A,B,key)@i => Not (Ex #j. K(key)@j))"

lkA A’s long-term priv. key

g^lkA A’s long-term pub. key

eskA A’s eph. priv. key

‘c’ constant

~t t has type fresh

$t t has type public

!F F is persistent

 39

Property specification

rule Ltk_reveal:
 [!Ltk($A, lkA)] --[LtkRev($A)]-> [Out(lkA)]

lemma key_secrecy:
 /*
 * If A and B are honest, the adversary doesn't learn the session key
 */
 "(All #i1 Test A B key.
 (
 Accept(Test, A, B, key) @ i1
 &
 not ((Ex #ia . LtkRev(A) @ ia)
 | (Ex #ib . LtkRev(B) @ ib)
)
)
 ==> not (Ex #i2. K(key) @ i2)
)"

lkA A’s long-term priv. key

g^lkA A’s long-term pub. key

eskA A’s eph. priv. key

‘c’ constant

~t t has type fresh

$t t has type public

!F F is persistent

lkA A’s long-term priv. key

g^lkA A’s long-term pub. key

eskA A’s eph. priv. key

‘c’ constant

~t t has type fresh

$t t has type public

!F F is persistent

lkA A’s long-term priv. key

g^lkA A’s long-term pub. key

eskA A’s eph. priv. key

‘c’ constant

~t t has type fresh

$t t has type public

!F F is persistent

 40

eCK security model for key exchange

● Adversary can
– learn long-term keys,
– learn the randomness generated in sessions,
– learn session keys

 41

eCK security model for key exchange

● Adversary can
– learn long-term keys,
– learn the randomness generated in sessions,
– learn session keys

● But only as long as the Test session is clean:
– No reveal of session key of Test session or its matching

session, and
– No reveal of randomness of Test session as well as the

long-term key of the actor, and
– If there exists a matching session, then something is

disallowed
– If there is no matching session, then something else...

 42

Lemma eCK_key_secrecy:

 "(All #i1 #i2 Test A B key. Accept(Test, A, B, key) @ i1

 & K(key) @ i2 ==>

 (

 (Ex #i3. SesskRev(Test) @ i3)

 | (Ex MatchingSession #i3 #i4 ms.

 (Sid (MatchingSession, ms) @ i3

 & Match(Test, ms) @ i4)

 & (Ex #i5. SesskRev(MatchingSession) @ i5))

 | [...andsoforth...]

)"

end

If Test accepts and the adversary knows k, then the Test must
not be fresh, i.e., “... reveal of session key of Test session or
its matching session”, or ...

Specifying eCK

DemoDemo

Tamarin’s algorithmTamarin’s algorithm

 45

Reading Tamarin’s graphs

 46

Algorithm intuition

● Constraint solving algorithm

● Main ingredients:
– Dependency graphs
– Deconstruction (decryption) chains
– Finite variant property

 47

Algorithm intuition

● Constraint solving algorithm

● Main ingredients:
– Dependency graphs
– Deconstruction (decryption) chains
– Finite variant property

● Invariant: if adversary knows M then either
– M was sent in plain
– Adversary can construct M by knowing subterms
– Adversary can deconstruct M …. from message sent

by protocol rule

 48

Basic principles

● Backwards search using constraint reduction
rules (>25!)

● Turn negation of formula into set of constraints

● Case distinctions
– E.g.: Possible sources of a message or fact

● Try to establish:
– no solutions exist for constraint system, or
– there exists a „realizable“ execution (trace)

● If multiple rules can be applied: use heuristics

 49

Heuristics?

● If Tamarin terminates, one of two options:
– Proof, or
– counterexample (in this context: attack)

● At each stage in proof, multiple constraint
solving rules might be applicable
– Similar to “how shall I try to prove this?”
– Choice influences speed & termination, but not the

outcome after termination

● Complex heuristics choose rule
– user can give hints or override

 50

Lemmas

● When it doesn’t terminate…

● Guide the proof manually; export

● Write lemmas
– “Hints” for the prover

● They don't change the guarantees, only help tool in
finding a proof

– E.g. specify lemma that can be used to prune proof
trees at multiple points

 51

How do I know my model is correct?

● It is easy to model something incorrectly

● Executability: try to prove expected traces
actually exist

● Break the protocol on purpose

● Much easier to check these things than in
manual proofs!

Symbolic vs Computational?Symbolic vs Computational?

 53

Modeling real-world objects

Reality Symbolic

 54

Modeling real-world objects

Reality Computational Symbolic

 55

Modeling real-world objects

Reality Computational Symbolic

 56

Symbolic analysis for cryptographers
●Fundamental differences

− Dolev-Yao attacker strong abstraction of Probabilistic Polynomial Time
Turing Machine

− Terms are an abstract view of bitstrings

− No quantitative information (e.g. bounds)

●Current algorithm limitations
− Restrictions on equational theories, e.g., MQV style exponentiation

tricky: we miss Kaliski’s UKS attack on MQV.

●What we can do (recent developments)
− Negotiation, weak crypto

− Non-prime order curves

− DSKS attacks

− Length extension attacks

 57

Tamarin: Conclusions

● Tamarin offers many unique features
– Unbounded analysis, flexible properties, equational

theories, global state, …
– Enables automated analysis in areas previously

unexplored

● It has many other features I didn't touch on now
– Induction, restrictions, reusable lemmas, heuristics

tuning, ...
– Many new features planned!

● Tool and sources are free; development on Github

cremers@cispa.de

 58

Morning exercise
● Start from files in

https://github.com/tamarin-prover/teaching/tree/master/tutorial-models/1_morning

●Consider NAXOS_01_simple.spthy
− Remove specific elements:

● Remove the first argument to the `h2` function used to compute the
session key, and check with Tamarin what happens if you analyse the
properties

−Note that you need to make the change both at the initiator and the responder

● Remove the second argument instead, etc. etc.

●Repeat for NAXOS_08_eCK.spthy
− Compare the results to before. Why do they differ?

●Compare NAXOS_08_eCK.spthy and NAXOS_15_eCK_FPS.spthy
− Explain the difference (attacks?)

https://github.com/tamarin-prover/teaching/tree/master/tutorial-models/1_morning

 59

Afternoon exercise

● Try Benjamin Kiesl’s Toy Protocol tutorial:

https://github.com/benjaminkiesl/tamarin_toy_protocol

https://github.com/benjaminkiesl/tamarin_toy_protocol

 60

References
●Tamarin on github (https://tamarin-prover.github.io/)

− Notably links to: all sources, example files, mailing list/google group, manual, tutorial data,
(incomplete) list of papers

●More accurate modeling of cryptography
− Seems Legit: Automated Analysis of Subtle Attacks on Protocols that Use Signatures

Jackson, Cremers, Cohn-Gordon, Sasse – ia.cr/2019/779

− Prime, Order Please! Revisiting Small Subgroup and Invalid Curve Attacks on Protocols using Diffie-
Hellman
Cremers, Jackson – ia.cr/2019/526

● Improving automation
− Automatic Generation of Sources Lemmas in Tamarin: Towards Automatic Proofs of Security

Protocols
Cortier, Delaune, Dreier – Springer/HAL report

●EMV Chip and pin → attack to circumvent PIN requirement for VISA
contactless
− The EMV Standard: Break, Fix, Verify

Basin, Sasse, Toro – emvrace.github.io

https://tamarin-prover.github.io/
https://ia.cr/2019/779
https://ia.cr/2019/526
https://www.springerprofessional.de/automatic-generation-of-sources-lemmas-in-tamarin-towards-automa/18373398
https://emvrace.github.io/

	title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Modelinx Naxos 2
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Conclusions
	Slide 58
	Slide 59
	Slide 60

