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● Formal methods/symbolic analysis
– Co-developer of Scyther & Tamarin

● Applied cryptography
– Security models & proof techniques

● Standardization and real-world applications
– TLS 1.3, IEEE 802.11, ISO, SPDM, …
– Secure messaging (contributed to MLS)
– DP3T / Corona Warn App

● Looking to hire phd & postdocs!

About me
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Tamarin: high-level

●Modeling protocol & adversary done using 
multiset rewriting
− Specifies transition system; induces set of traces

●Property specification using fragment of first-
order logic
− Specifies “good” traces

●Tamarin tries to
− provide proof that all system traces are good, or

− construct a counterexample trace of the system 
(attack)
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Modeling in Tamarin

● Multiset rewriting; surprisingly similar to “oracles”

● Basic ingredients:
– Terms (think “messages”)
– Facts (think “sticky notes on the fridge”)
– Special facts: Fr(t), In(t), Out(t), K(t)

● State of system is a multiset of facts
– Initial state is the empty multiset
– Rules specify the transition rules (“moves”)

● Rules are of the form:
l --> r
l --[ a ]-> r 
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The model

● Term algebra
– enc(_,_), dec(_,_), 

h(_,_),
_^_, _-1, _*_, 1, …
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The model

● Term algebra
– enc(_,_), dec(_,_), 

h(_,_),
_^_, _-1, _*_, 1, …

● Equational theory
– dec(enc(m,k),k) =E m,
– (x^y)^z =E x^(y*z), 
– (x-1)-1 =E x, ...

● Facts
– F(t1,...,tn)

● Transition system
– State: multiset of facts
– Rules:      l –[ a ]→ r

● Tamarin-specific
– Built-in Dolev-Yao 

attacker rules
● In( ), Out( ), K( )

– Special Fresh rule:
● [] --[]--> [ Fr(x) ]

– With additional 
constraints on systems 
such that x unique 
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Semantics

● Transition relation
S –[a]→

R   
(( S \# l ) È# r )

where
● l –[a]→ r is a ground instance of a rule in R, and 
● l Í# S wrt the equational theory
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Semantics

● Transition relation
S –[a]→

R   
(( S \# l ) È# r )

where
● l –[a]→ r is a ground instance of a rule in R, and 
● l Í# S wrt the equational theory

● Executions
Exec( R) = { [ ] –[a

1
]→ … –[a

n
]→ S

n 

| "n . Fr(n) appears only once on right-hand 
  side of rule }

● Traces
Traces( R) = { [a

1
,…,a

n
] | [ ] –[a

1
]→ … –[a

n
]→ S

n 
Î Exec( R) }
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Semantics: example 1

● Rules
– rule 1: [ ]        –[ Init()      ]→ [ A('5') ]
– rule 2: [ A(x) ] –[ Step(x) ]→ [ B(x) ]

‘c’ constant
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Semantics: example 1

● Rules
– rule 1: [ ]        –[ Init()      ]→ [ A('5') ]
– rule 2: [ A(x) ] –[ Step(x) ]→ [ B(x) ]

● Execution example
● [ ]
● –[ Init() ]→ [ A('5') ] 
● –[ Init() ]→ [ A('5'), A('5') ]
● –[ Step('5') ]→ [ A('5'), B('5') ]

‘c’ constant



  21

Semantics: example 1

● Rules
– rule 1: [ ]        –[ Init()      ]→ [ A('5') ]
– rule 2: [ A(x) ] –[ Step(x) ]→ [ B(x) ]

● Execution example
● [ ]
● –[ Init() ]→ [ A('5') ] 
● –[ Init() ]→ [ A('5'), A('5') ]
● –[ Step('5') ]→ [ A('5'), B('5') ]

● Corresponding trace
● [ Init(), Init(), Step('5') ]

‘c’ constant
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Semantics: example 2 (persistent facts)

● Rules
– rule1: [                   ] –[ Init()        ]→ [ !C('ok'), D('1') ]
– rule2: [ !C(x), D(y) ] –[ Step(x,y) ]→ [ D(h(y))            ]

‘c’ constant
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Semantics: example 2 (persistent facts)

● Rules
– rule1: [                   ] –[ Init()        ]→ [ !C('ok'), D('1') ]
– rule2: [ !C(x), D(y) ] –[ Step(x,y) ]→ [ D(h(y))            ]

● Execution example
● [ ]
● –[ Init()   ]→ [ !C('ok'), D('1'          ) ] 
● –[ Step('ok','1'       ) ]→ [ !C('ok'), D(h('1')    ) ]
● –[ Step('ok',h('1')  ) ]→ [ !C('ok'), D(h(h('1')) ) ]

‘c’ constant
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Semantics: example 2 (persistent facts)

● Rules
– rule1: [                   ] –[ Init()        ]→ [ !C('ok'), D('1') ]
– rule2: [ !C(x), D(y) ] –[ Step(x,y) ]→ [ D(h(y))            ]

● Execution example
● [ ]
● –[ Init()     ]→ [ !C('ok'), D('1'          ) ] 
● –[ Step('ok','1'       ) ]→ [ !C('ok'), D(h('1')    ) ]
● –[ Step('ok',h('1')  ) ]→ [ !C('ok'), D(h(h('1')) ) ]

● Corresponding trace
● [ Init(), Step('ok', '1'), Step('ok', h('1')) ]

‘c’ constant
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Tamarin tackles complex interaction with adversary 

adversary

controlling

the network

Your protocol modeled 
with rewrite rules…..

Server

ClientClient
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adversary

controlling

the network
Server
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Your protocol modeled with rewrite rules
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The Naxos protocol
lkA   A’s long-term priv. key

g^lkA A’s long-term pub. key

eskA  A’s eph. priv. key
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Modeling Naxos
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Modeling Naxos

rule Init_1:
  let exI = h1(<~eskI, ~lkI >)
      hkI = 'g'^exI
  in
   [ Fr( ~eskI ) ] --> [ Out( hkI) ]

lkA   A’s long-term priv. key

g^lkA A’s long-term pub. key

eskA  A’s eph. priv. key

‘c’ constant

~t t has type fresh
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Modeling Naxos

rule generate_ltk:
   let pkA = 'g'^~lkA
   in
   [ Fr(~lkA) ] --> [ !Ltk( $A, ~lkA ), !PK( $A, pkA), Out(pkA) ]

rule Init_1:
  let exI = h1(<~eskI, ~lkI >)
      hkI = 'g'^exI
  in
   [ Fr( ~eskI ), !Ltk( $I, ~lkI ) ] --> [ Out( hkI) ]

lkA   A’s long-term priv. key

g^lkA A’s long-term pub. key

eskA  A’s eph. priv. key
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Modeling Naxos

rule generate_ltk:
   let pkA = 'g'^~lkA
   in
   [ Fr(~lkA) ] --> [ !Ltk( $A, ~lkA ), !PK( $A, pkA), Out(pkA) ]

rule Init_1:
  let exI = h1(<~eskI, ~lkI >)
      hkI = 'g'^exI
  in
   [ Fr( ~eskI ), !Ltk( $I, ~lkI ) ] --> [ Out( hkI), 
     Init_1( ~eskI, $I, $R, ~lkI ,hkI) ]

rule Init_2:
   [ Init_1( ~eskI, $I, $R, ~lkI , hkI), In( Y ) ] --> []

lkA   A’s long-term priv. key

g^lkA A’s long-term pub. key

eskA  A’s eph. priv. key
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Property specification

● first order logic interpreted over a trace
– False False

– Equality t1 =E
 t

2

– Timepoint ordering     #i < #j
– Timepoint equality #i = #j
– Action at timepoint #i A@#i
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Property specification

● l --[ a ]-> r

● Actions stored as (action) trace
Additionally:
adversary knows facts: K()
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Property specification

● l --[ a ]-> r

● Actions stored as (action) trace
Additionally:
adversary knows facts: K()

rule Init_2: 
  let exI = h1(< ~eskI, ~lkI >),
      key  = h2(< Y^~lkI, pkR^exI, Y^exI, $I, $R >)
  in      
   [ Init_1( ~eskI, $I, $R, ~lkI , hkI), In( Y ), !Pk($R,pkR) ]
   --[ Accept(~eskI, $I, $R, key) ]-->
   []

lkA   A’s long-term priv. key

g^lkA A’s long-term pub. key

eskA  A’s eph. priv. key

‘c’ constant
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$t t has type public
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Property specification

● l --[ a ]-> r

● Actions stored as (action) trace
Additionally:
adversary knows facts: K()

rule Init_2: 
  let exI = h1(< ~eskI, ~lkI >),
      key  = h2(< Y^~lkI, pkR^exI, Y^exI, $I, $R >)
  in      
   [ Init_1( ~eskI, $I, $R, ~lkI , hkI), In( Y ), !Pk($R,pkR) ]
   --[ Accept(~eskI, $I, $R, key) ]-->
   []

Lemma trivial_key_secrecy:
  "(All #i Test A B key. Accept(Test,A,B,key)@i => Not (Ex #j. K(key)@j ))"

lkA   A’s long-term priv. key

g^lkA A’s long-term pub. key

eskA  A’s eph. priv. key
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Property specification

rule Ltk_reveal:
   [ !Ltk($A, lkA) ] --[ LtkRev($A) ]-> [ Out(lkA) ]

lemma key_secrecy:
  /*
   * If A and B are honest, the adversary doesn't learn the session key
   */
  "(All #i1 Test A B key.
    (
      Accept(Test, A, B, key) @ i1
      &
      not ( (Ex #ia . LtkRev( A ) @ ia )
          | (Ex #ib . LtkRev( B ) @ ib )
          )
    )
    ==> not (Ex #i2. K( key ) @ i2 )
  )"
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g^lkA A’s long-term pub. key

eskA  A’s eph. priv. key

‘c’ constant
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eCK security model for key exchange

● Adversary can
– learn long-term keys,
– learn the randomness generated in sessions,
– learn session keys
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eCK security model for key exchange

● Adversary can
– learn long-term keys,
– learn the randomness generated in sessions,
– learn session keys

● But only as long as the Test session is clean:
– No reveal of session key of Test session or its matching 

session, and
– No reveal of randomness of Test session as well as the 

long-term key of the actor, and
– If there exists a matching session, then something is 

disallowed
– If there is no matching session, then something else...
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Lemma eCK_key_secrecy:

  "(All #i1 #i2 Test A B key. Accept(Test, A, B, key) @ i1 

                          & K( key ) @ i2 ==>

  (

      (Ex #i3. SesskRev( Test ) @ i3 )

    | (Ex MatchingSession #i3 #i4 ms.

           ( Sid ( MatchingSession, ms ) @ i3

           & Match( Test, ms ) @ i4)

           & (Ex #i5. SesskRev( MatchingSession ) @ i5 ))

    | [ ...andsoforth... ]

  )"

end

If Test accepts and the adversary knows k, then the Test must 
not be fresh, i.e., “... reveal of session key of Test session or
its matching session”, or ...

Specifying eCK
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Reading Tamarin’s graphs
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Algorithm intuition

● Constraint solving algorithm

● Main ingredients:
– Dependency graphs
– Deconstruction (decryption) chains
– Finite variant property
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Algorithm intuition

● Constraint solving algorithm

● Main ingredients:
– Dependency graphs
– Deconstruction (decryption) chains
– Finite variant property

● Invariant: if adversary knows M then either
– M was sent in plain
– Adversary can construct M by knowing subterms
– Adversary can deconstruct M …. from message sent 

by protocol rule 
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Basic principles

● Backwards search using constraint reduction 
rules (>25!)

● Turn negation of formula into set of constraints

● Case distinctions
– E.g.: Possible sources of a message or fact

● Try to establish:
– no solutions exist for constraint system, or
– there exists a „realizable“ execution (trace)

● If multiple rules can be applied: use heuristics
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Heuristics?

● If Tamarin terminates, one of two options:
– Proof, or
– counterexample (in this context: attack)

● At each stage in proof, multiple constraint 
solving rules might be applicable
– Similar to “how shall I try to prove this?”
– Choice influences speed & termination, but not the 

outcome after termination

● Complex heuristics choose rule
– user can give hints or override
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Lemmas

● When it doesn’t terminate…

● Guide the proof manually; export

● Write lemmas
– “Hints” for the prover

● They don't change the guarantees, only help tool in 
finding a proof

– E.g. specify lemma that can be used to prune proof 
trees at multiple points
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How do I know my model is correct?

● It is easy to model something incorrectly

● Executability: try to prove expected traces 
actually exist

● Break the protocol on purpose

● Much easier to check these things than in 
manual proofs!



Symbolic vs Computational?Symbolic vs Computational?
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Modeling real-world objects

Reality Symbolic
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Modeling real-world objects

Reality Computational Symbolic
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Modeling real-world objects

Reality Computational Symbolic



  56

Symbolic analysis for cryptographers
●Fundamental differences

− Dolev-Yao attacker strong abstraction of Probabilistic Polynomial Time 
Turing Machine

− Terms are an abstract view of bitstrings

− No quantitative information (e.g. bounds)

●Current algorithm limitations
− Restrictions on equational theories, e.g., MQV style exponentiation 

tricky: we miss Kaliski’s UKS attack on MQV.

●What we can do (recent developments)
− Negotiation, weak crypto

− Non-prime order curves

− DSKS attacks

− Length extension attacks
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Tamarin: Conclusions

● Tamarin offers many unique features
– Unbounded analysis, flexible properties, equational 

theories, global state, …
– Enables automated analysis in areas previously 

unexplored

● It has many other features I didn't touch on now 
– Induction, restrictions, reusable lemmas, heuristics 

tuning, ...
– Many new features planned!

● Tool and sources are free; development on Github

cremers@cispa.de
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Morning exercise
● Start from files in

https://github.com/tamarin-prover/teaching/tree/master/tutorial-models/1_morning

●Consider NAXOS_01_simple.spthy
− Remove specific elements:

● Remove the first argument to the `h2` function used to compute the 
session key, and check with Tamarin what happens if you analyse the 
properties

−Note that you need to make the change both at the initiator and the responder

● Remove the second argument instead, etc. etc.

●Repeat for NAXOS_08_eCK.spthy
− Compare the results to before. Why do they differ?

●Compare NAXOS_08_eCK.spthy and NAXOS_15_eCK_FPS.spthy
− Explain the difference (attacks?)

https://github.com/tamarin-prover/teaching/tree/master/tutorial-models/1_morning
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Afternoon exercise

● Try Benjamin Kiesl’s Toy Protocol tutorial:

https://github.com/benjaminkiesl/tamarin_toy_protocol

https://github.com/benjaminkiesl/tamarin_toy_protocol
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References
●Tamarin on github (https://tamarin-prover.github.io/)

− Notably links to: all sources, example files, mailing list/google group, manual, tutorial data, 
(incomplete) list of papers 

●More accurate modeling of cryptography
− Seems Legit: Automated Analysis of Subtle Attacks on Protocols that Use Signatures

Jackson, Cremers, Cohn-Gordon, Sasse – ia.cr/2019/779 

− Prime, Order Please! Revisiting Small Subgroup and Invalid Curve Attacks on Protocols using Diffie-
Hellman
Cremers, Jackson – ia.cr/2019/526 

● Improving automation
− Automatic Generation of Sources Lemmas in Tamarin: Towards Automatic Proofs of Security 

Protocols
Cortier, Delaune, Dreier – Springer/HAL report 

●EMV Chip and pin → attack to circumvent PIN requirement for VISA 
contactless
− The EMV Standard: Break, Fix, Verify

Basin, Sasse, Toro – emvrace.github.io 
 

https://tamarin-prover.github.io/
https://ia.cr/2019/779
https://ia.cr/2019/526
https://www.springerprofessional.de/automatic-generation-of-sources-lemmas-in-tamarin-towards-automa/18373398
https://emvrace.github.io/
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