
Tamarin Prover Tutorial

David Basin, Cas Cremers

Summer School on Real-world Crypto and Privacy

2023

1

About us

• David Basin

� ETH Zurich since 2003. Heads Information Security Group

� Research on Formal Methods for Security

Tamarin, Monpoly, ActionGUI, VerifiedScion, CookieBlock, ...

� Also applications, e.g., the SCION Internet

� Enjoy both academic and industrial research

• Cas Cremers: Professor @CISPA

He will tell you more himself!

• We are both looking for Postdocs interested in our topics.

2

Why attend this tutorial?

You are a protocol designer, quality assurance engineer, security

researcher/grad student. But the sun is out and the water is warm.

• To learn how to:

� Model cryptographic protocol

� Model the adversary

� Specify properties

• Understand verification and attack finding

• Gain experience with a state-of-the-art tool: Tamarin

Overall: deepen your knowledge of security protocols, their
specification, and their machine-supported verification.

3

Tutorial’s structure

Morning:

• Overview, motivation, basics (David)

• Modeling, demos (Cas)

• break

• Exercise I, Naxos (you)

Afternoon:

• More modeling, advanced primitives (Cas)

• EMV (David)

• break

• Exercise II (you)

4

Is this relevant the real world???

5

5G Authentication

6

EMV (Europay, Mastercard, Visa)

7

Where is the difficulty?

8

Where is the difficulty?

9

Weapon of choice

10

Weapon of choice

11

Tamarin Prover

12

What can Tamarin do for you?

• Rapid prototyping

• Finding attacks before you start a proof effort

• Provide a symbolic proof

• Explore alternative designs/threat models quickly

13

Contributors (partial)

Simon

Meier

Benedikt

Schmidt

Cas

Cremers

David

Basin

Robert

Kunneman

Steve

Kremer

Cedric

Staub

Jannik

Dreier

Ralf

Sasse

Sasa

Radomirovic

Lara

Schmid

Charles

Dumenil

Kevin

Milner

Lucca

Hirschi 14

Resources and documentation

15

Case Studies (examples)

16

Security protocols

• A protocol consists of rules describing how messages are

exchanged between principals.

1. A → B : {A,NA}KB

2. B → A : {NA, NB}KA

3. A → B : {NB}KB

I.e. a distributed algorithm with emphasis on communication.

• A security (or cryptographic) protocol uses cryptographic

mechanisms to achieve security objectives.

• In practice, descriptions combine prose, data types, diagrams, ad

hoc notation, and message sequences as above.

17

Message constructors (sample)

Names: A, B or Alice, Bob,

Asymmetric keys: A’s public key KA and private key K−1

A .

Symmetric keys: KAB shared by A and B.

Encryption: asymmetric {M}KA
and symmetric {M}KAB

.

Signing: {M}
K−1

A
.

Nonces: NA. Fresh data items used for challenge/response.

Timestamps: T . Denote time, e.g., used for key expiration.

Message concatenation: M1,M2. (Or M1||M2)

Example: {A, TA,KAB}KB
.

18

Communication

• Fundamental notion: communication between principals (agents).

A → B : {A, TA,KAB}KB

• A and B name roles.

Can be instantiated by any principal playing the role.

• Communication usually modeled as being asynchronous.

A → : {A, TA,KAB}KB

→ B : {A, TA,KAB}KB

• Protocol specifies actions of principals in different protocol roles.

It thereby also defines a set of event sequences (traces).

19

An authentication protocol (NSPK)

1. A → B : {A,NA}KB

2. B → A : {NA, NB}KA

3. A → B : {NB}KB

Here is an instance (a protocol run):

BobK

{41}

AliceK

BobK

{17,Alice}

{17,41}

20

Execution in presence of attacker

Aliases: intruder, adversary, spy, Mallory, ...

How do we model the attacker? Possibilities:

• He knows the protocol but cannot break crypto. (Standard)

Separates concerns: attacks on crypto versus communication.

• He is passive but overhears all communications.

• He is active and can intercept and generate messages.

“Transfer 20 CHF to Alice” ; “Transfer 10,000 CHF to Bob”

• He can compromise parties running the protocol, or perhaps learn

some of their secrets (like their long-term keys).

21

Standard symbolic attacker model

(Dolev-Yao)

• An active attacker who controls the network.

� He can intercept and read all messages.

� He can decompose messages into their parts.

But cryptography is “perfect”: decryption requires inverse keys.

� He can construct and send new messages, any time.

� He can even compromise some agents and learn their keys.

• A protocol should ensure that communication between

non-compromised agents achieves objectives (next slide).

• Strong attacker =⇒ protocols work in many environments.

Note: symbolic model idealizes cryptographic model based on

bit-strings and probabilistic polynomial-time attackers.
22

Example: NSPK

B
N N

A

1. A → B : {A,NA}KB

2. B → A : {NA, NB}KA

3. A → B : {NB}KB

• Objective: Upon completion, A and B have been running the protocols

in the right role and possess the same nonces, which are shared secrets

between them, i.e., not known to the attacker.

(We see later how to state this formally.)

• Correctness argument (informal).

1. This is Alice and I have chosen a nonce NAlice.

2. Here is your Nonce NAlice. Since I could read it, I must be Bob. I also

have a challenge NBob for you.

3. You sent me NBob. Since only Alice can read this and send it back, you

must be Alice.

Protocol proposed in 1970s and used for decades. 23

Even Trump can beat a grandmaster

24

Attack on NSPK
1. A → B : {A,NA}KB

2. B → A : {NA, NB}KA

3. A → B : {NB}KB

NSPK #1 NSPK #2

a,N{ }a Kc
a,N{ }a Kb

aa Kb
{ }N ,N Ka{ }

abN ,N

Nb K
{ }

c
Nb K

{ }
b

b(ob) believes he is speaking with a(lice)!

How might you protect against this attack?
25

Why are such attacks

so difficult to spot?

(It took 20 years to find attack.)

• Assumptions are unclear.

Is the intruder an insider or an outsider?

• Complex underlying model despite the suggestion of simplicity.

• Humans poor at envisioning all possible interleaved computations.

• And real protocols are much more complex!

We humans need help in modeling and reasoning about
protocols and their properties.

26

