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COSIC: “an” ENCRYPTION POWERHOUSE RISES
•Wall Street Journal dd. 10/12/2015: “In Belgium, an Encryption Powerhouse 
Rises, University of Leuven has become a battleground in the fight between 
privacy and surveillance”
• “Packed with hardware and laptop-wielding students in jeans and sneakers, 
COSIC’s labs develop new encryption for corporate clients, or test their in-house 
antihacking technology.”

https://www.wsj.com/articles/in-belgium-an-encryption-powerhouse-rises-1449791014
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Outline

6

• Position of cryptography in the design of embedded systems
o Root of trust & secure composition

• Cryptography relies on hardware because it needs:
o Performance (see DES chip)
o Secure implementation: protection against side-channel, fault attacks
o Secure key storage (PUFs)
o Quality random number generators
o Acceleration of new crypto: COED and FHE 

• Challenges for crypto to work on
• Conclusions
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NEXT GENERATION EMBEDDED 
SYSTEMS

7
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Automotive
“Networked embedded systems interacting with the environment”

[De Tijd, February 2, 2022]
8

Today 58 Melexis chips in TESLA Model Y,
170 Melexis chips in Mercedes EQS

• Networked è secure, authenticated 
communication,  low latency

• Embedded è compact (no external 
memory), cheap, no batch processing  

• Interacting with environment è
• LOW latency
• Compact

• Resistant to attacks

8
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How to evaluate security? Where to start?

9[Lennert Wouters, COSIC]

https://youtu.be/aVlYuPzmJoY

Passive Keyless Entry and Start System:
• Wireless challenge response system
• No Mutual authentication (model S)
• Weak crypto (model S)
• Secure element, but problems with protocol 

(model X)
• Off the shelf radios and components

Tesla Model S key fob (2018)

Tesla Model X key fob (2020)
https://youtu.be/clrNuBb3myE
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TRUST AND TRUST BOUNDARIES
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Trust Definition
Trust (R. Anderson in “Security Engineering”, after NSA):
• “Trusted system or component is one whose failure can break the security policy, while a 

trustworthy system or component is one that won’t fail.”

Trust (Trusted Computing Group):
• “An entity can be trusted if it always behaves in the expected manner for the intended purpose.”

Loosely stated: if trusted system or component fails, then bad things can happen.

Goal of security: minimize what needs to be trusted 

How does cryptography fit in this context?

11
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What is the root of trust?
• For network system: router box

• For secure boot: the TPM or SE

• For OS designer: the architecture/micro-architecture of a processor 

• For cryptographer: the VHDL or Verilog code on FPGA

• For IOT devices: attack resistance (side-channel, fault, manipulation, etc.)

• For digital designer: the standard cells or the technology
12
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HOW: DESIGN METHOD

• Application: secure communication 
• Cryptography: public key, secret key, 

post-quantum, 
• Architecture: Hardware/Software 

platform, Sancus
• Micro-architecture: crypto co-

processors, instruction set extension, 
• Logic circuits and (secure) memory
• TRNGs and PUFs
• Technology

DECOMPOSE IN COMPONENTS

Cipher Design,
Biometrics

D Q

Vcc

CPU CryptoMEM

JCA
Java

JVM

CLK

Identification

Confidentiality
Integrity

D Q

Vcc

CPU
MEM

JCA
Java

KVM

CLK

Identification

Confidentiality
Integrity

Identification
Integrity

PUFMem

“A root of trust is a component at a lower abstraction layer, 
upon which the system relies for its security.”

[P. Schaumont, I. Verbauwhede,
“Design methods for security 

and Trust, DATE2007]
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Recent:

14

• US CHIPS and Science Act
• September 2022

14
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DES, AES, ECC, SABER dedicated ASICs

17

• Feasibility: what is feasible, throughput, latency, power (cooling), energy 
(battery lifetime) etc.

• Next: light weight crypto, COED, FHE, …
Rijndael ECC 

SRAM

Distributed 
SRAM

Distributed 
SRAMA

cc
el

er
at

or

Full Saber core with Scan Interface

1m
m

1.6 mm

SaberDES

17

Wide range of design options!

ASIC FPGA
Domain
specific CO-proc DSP CPU

Performance/Energy unit

High Low

Programmability

Low High

Area efficiency

HW SWHW-SW

VLIW GPU

Energy – throughput– cost - flexibility trade-off
Almost always: HW-SW co-design!

18
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[1] Amphion CS5230 on Virtex2 + Xilinx Virtex2 Power Estimator
[2] Dag Arne Osvik: 544 cycles AES – ECB on StrongArm SA-1110
[3] Helger Lipmaa  PIII assembly handcoded + Intel Pentium III (1.13 GHz) Datasheet
[4] gcc, 1 mW/MHz @ 120 Mhz Sparc – assumes 0.25 u CMOS
[5] Java on KVM (Sun J2ME, non-JIT) on 1 mW/MHz @ 120 MHz Sparc – assumes 0.25 u CMOS
[6] Shay Gueron, Intel

Asm Pentium III [3]

Java [5] Emb. Sparc

C   Emb. Sparc [4]

Power

FPGA [1]

0.18um CMOS

Figure of Merit
(Gb/s/W = Gb/J)

ThroughputAES 128bit key
128bit data

Throughput – Energy numbers

ASM StrongARM [2]

Intel ISA for AES [6]

648 Mbits/sec

450 bits/sec

133 Kbits/sec

1.32 Gbit/sec

3.84 Gbits/sec

31 Mbit/sec

32 Gbit/sec

41.4 W

120 mW

350 mW

490 mW

120 mW

240 mW

95 W

0.0000037 (1/3.000.000)

0.015   (1/800)

0.0011    (1/10.000)

11 (1/1)

2.7        (1/4)

0.13        (1/85)

0.34        (1/33)

[P. Schaumont, and I. Verbauwhede, "Domain specific 
codesign for embedded security," Computer 36(4), 
pp. 68-74, 2003.]
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Side-channel and fault attacks

21

• Many types of side-channel analysis
o Power, Electro Magnetic (EM), Time, 
o Micro-architectural side-channel: cache, transient execution attacks

• Many types of fault or active attacks:
o EM, laser, clock, voltage glitch, etc. 

• Local or remote
• Combined attacks

21

Measurement methods
Contact power 
measurements:
-shunt resistors
-current probes

Cost: 150- 5000€

Freq: kHz – MHz range

Contactless power 
measurements:
-EM probes

Cost: 2000 - 25000€

Freq: kHz – GHz range

EM measurements:
-EM probes

Cost: 2000 - 25000€

Freq: kHz – GHz range

Local EM measurements:
-EM probes

Cost: >50000€

Freq: MHz – GHz range

[picture credit: Langer] [picture credit: Langer]

22
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Research challenges for cryptography
• Goal: introduce new research topics, improve existing ones

• Challenge 1: masking is hard in practice
• Challenge 2: masking is expensive
• Challenge 3: Possibilities of PUFs
• Challenge 4: Random number generation 
• Challenge 5: NEW – Fully Homomorphic Encryption

23

23

Countermeasure: masking

24

• Types of masking
o Boolean
o Arithmetic
o Inner product
o Threshold
o …

• Two experiments:
o Symmetric key: AES masking on micro controllers
o Public key: Post-quantum masking of lattice based encryption

All start from similar leakage MODEL:
Shares leak independently

All require randomness

24
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Masking in practice is HARD
• Experiment: first order SW masked AES evaluated for:

o Side-channel leakage
o Timing
o Randomness requirements

25[A. Becker, L. Wouters, Cosade 2022]

25

Results [Cosade 2022]
• Key recovery with first order attack
• Incorrect TRNG instantiations
• Benchmarking issues 
• Software bugs 

26

26
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Correlation Power Analysis (CPA)
• All implementations compiled using given makefile
• Only inserted triggers
• Textbook first order CPA: 

o SBOX in or output
o Hamming Weight leakage, or single bit when bitsliced
o 20k traces

• No claims about the mathematical concepts or proofs

27

27

Set-up in the lab

28

28
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CPA results

29

AES Key recovery:
• Byte by byte
• correct byte stands out
to 255 other options

X-axis: number of samples
Y-axis: correlation coef

29

For more details see COSADE 2022
30

30
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Cause: violation of assumptions

31

• Assumption: shares leak independently

• Leakage caused by the microcontroller breaks this assumption
o Assume share A is in r0
o Move share B into r0 (and overwrite share A)
o Information on A ⊕ B is leaked!

• Complex processors: transient execution
• Compiler optimizations
• Coupling through power and ground network
• Below 60nm CMOS ‘static’ leakage

EDA message:
TOOLS could help here!

31

Research challenges for cryptography
• Goal: introduce new research topics, improve existing ones

• Challenge 1: masking is hard in practice
• Challenge 2: masking is expensive
• Challenge 3: Possibilities of PUFs
• Challenge 4: Random number generation 
• Challenge 5: NEW – Fully Homomorphic Encryption

32

32
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33

33

Lattice Based Post-quantum crypto (NIST)

34

• KEM = key generation, encapsulation, decapsulation
• CCA secure: Fujisaki – Okamoto transformation
• Similar for 

o Kyber 
o Saber

34
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Cost of decapsulation

35

• Expensive parts: multiplication, hash, sampling
• Saber vs Kyber

o Very similar
o Power of two q= 213

    vs q= 3329
o MLWR vs MLWE
     implicit vs explicit
     error addition

35

Arithmetic and Boolean masking

36

Conversion is: Arithmetic to Boolean (A2B) or Boolean to Arithmetic (B2A)

36
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Polynomial arithmetic 

37

• Easy to protect with arithmetic masking
• Small overhead factors:

o 1.7 to 2.0 (n=2)
o 2.96 (n=3)

M. VanBeirendonck et al. ACM Journal on Emerging Technologies in Computing Systems 17(2), 25 pages, 2021 [BDK+21]

n = sharing factor

37

SHA-3 

38

• Protected with Boolean masking

• Overhead factors
• 5.9 to 9.26 (n = 2)
• 73.1 (n=3)

Depends if you compare to plain-C or
optimized assembly

[Boolean masking: BDPVA10,BBD+16]

38
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Centered Binomial sampling

39

• Mix of A2B and B2A
• Expensive!

• Etc.

39

One A2B conversion cost (Saber)

40

[1] Revisiting Higher-Order Masked Comparison for Lattice-Based Cryptography: Algorithms and Bit-
sliced Implementations, D’Anvers J.P., Van Beirendonck M., Verbauwhede I., IACR ePrint  2022/110.
[2] Bitslicing Arithmetic/Boolean Masking Conversions for Fun and Profit with Application to Lattice-Based 
KEMs, Bronchain O. and Cassiers G., IACR Cryptol. ePrint Arch. 2022: 158 (2022).

Requires bit-slicing
o 55-61 K cycles (n=2)
o 172-206 K (n=3)
o 302-365 K (n=4)

+ randomness

40
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Masking is expensive

41

• Unmasked Kyber/Saber similar cost
• Masked Kyber more expensive vs Saber

o Power of two 
o Rounding vs error sampling

• Masking is expensive AND requires randomness

CPU cycles
                    x1000
Scheme

Unmasked 1st order
n=2

2nd order
n=3

3rd order
n=4

Saber 773 3,011 (1x) 5,534 (1x) 8,591 (1x)

Kyber [2] 804 7,716 (2.56x) 11,880 (2.14x) 16,715 (1.94x)

CPU cycles
                    x1000
Scheme

Unmasked 1st order
n=2

2nd order
n=3

3rd order
n=4

Saber 773 3,011 (1x) 5,534 (1x) 8,591 (1x)

Kyber [2] 804 7,716 (2.56x) 11,880 (2.14x) 16,715 (1.94x)

COST 1x 3.9x – 9.6x 7.2x – 14.8x 11.1x – 20.8x
Random bytes 12 KB 42 KB 90 KB

Platform: ARM Cortex M4
Framework: PQM4 
Compiled: arm-none-eabi-gcc
Version: 9.2.1

41

Research challenges for cryptography
• Goal: introduce new research topics, improve existing ones

• Challenge 1: masking is hard in practice
• Challenge 2: masking is expensive
• Challenge 3: Possibilities of PUFs
• Challenge 4: Random number generation 
• Challenge 5: NEW – Fully Homomorphic Encryption

o On FPGA
o On ASIC

42

42
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43

43

Fully Homomorphic Encryption

44

m

f(m)sk, pk

pk

44
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Multiple schemes

45

• Partially homomorphic: Paillier system
• Somewhat homomorphic: 

o Limited number of multiplications 
o Fan-Vercauteren: 

• Fully Homomorphic Encryption
o Unlimited number of multiplications
o Requires ‘bootstrapping’ 

• Multiple schemes: 
o BFV: Brakerski – Fan – Vercauteren 
o BGV: Brakerski – Gentry – Vaikuntanathan
o TFHE: Torus Fully Homomorphic Encryption
o …

45

Multiple FHE schemes

46[copied from ZAMA website]

46
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Challenge large numbers:
• Experiment 1 [CHES2015] : YASHE (now no longer used, reduced security)

o Ciphertext size 5MB to 20MB (Polynomial size is 32768 (2^15) to 65536 (2^16), modulus 
1200 to 2500 bits), could evaluate depth of Simon block cipher

• Experiment 2 [TC2018]: HEPCLOUD, FV 
o Ciphertext pair 9.2MB with parameters Polynomial size is 32768 (2^15), modulus 1128 bits, 

depth 36, 85 bits security level. 
o Bottleneck: I/O between FPGA and external memory

• Experiment 3 [TC2020]: HEAWS, FV
o Cipher text pair 180KB, with parameters Polynomials size is 4096, modulus min 372 (Q), 

180 (q), depth 4, more than 80 bits security. 
o Useful for small neural network applications
o Fits on one FPGA

47

47

DARPA DPRIVE program: in progress

48Now: phase 2 running, with three teams: Galois, Duality and Intel

48
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BGV parameters in DPRIVE

49

49

Hardware acceleration options

50

50
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Challenges

Cloud FPGA
• Alveo U280 (in 5nm or 7 nm) 
• Included into Amazon AWS F1
• Memory hierarchy
• 225 Watt! (cooling)

ASIC (phase 1)
• 150 mm2 in 12nm 
• Global Foundaries
• Memory hierarchy
• 57 – 115 Watt

51

• Computational complexity
o NTT/FFT acceleration

• Memory
o SIZE
o BANDWIDTH

51

Three experiments – three domain specific processors
FPGA - HEAWS

• BFV – leveled HE
• 80 bit security 
• Shallow depth

ASIC – DPRIVE – BASALISC 

• BGV – includes Bootstrap
• 128 bit security
• DPRIVE constraints

52

IEEE TC 2020
IACR 2022/657

• NTT acceleration
• Residue Number System
• Dedicated instruction set
• No cache: compile time known 

FPGA - FPT

• TFHE
• 128/110 bit security
• Alveo U280

• FFT acceleration
• Streaming bootstrap

IACR 2022/1635

52
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Option 1: CPU - General purpose processor

Programmable
Standardized instructions set
Software design

Apple
M2

53

53

Option 2: Domain specific processing
• Tightly couple: instruction set extension

o Register mapped
o Reuse CPU infrastructure

• Reuse decode, registers, cache, bus network, etc. 

o Example AES instructions

• Here: FHE specific operations
o Leads to DOMAIN SPECIFIC PROCESSORS

54

54
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Option 3: Domain specific co-processor
• Inside CPU
  = custom ISA

• Local bus
  = tight coupled

• Peripheral
  = loosely coupled

[Picture: P. Schaumont, “A practical introduction to Hardware/Software Codesign”, 2nd ed55

55

Hardware technology: FPGA versus ASIC

FPGA

• Field Programmable Gate Array

ASIC

• Application Specific Integrated Circuit

Xilinx XC4000ex (OLD!)
56

56
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FPGA: Program look-up tables and interconnect

Buy FPGA, write VHDL or Verilog
Synthesis, place and route
load onto FPGA (in the cloud)

CLB

57

57

First experiment: FPGA
Acceleration of BFV on Amazon cloud

58

58
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FPGA Memory Resources (Alveo U280)

BRAM – 9 MB
• ON CHIP Local, flexible in size and width
• Single cycle access, dual port
• Ideal for irregular address arithmetic

URAM – 33 MB
• ON CHIP, local
• Fixed width, depth modules
• Single port

HBM – 8 GB
• IN PACKAGE , 3 D stacked memory 
• HIGH parallel memory, 460 GB/s
• High latency

DDR – 32 GB
• ON BOARD
• 2 parallel access ports, 38 GB/s. 
• High latency

LOCAL ON CHIP

IN PACKAGE, 3D

ON BOARD

59

Amazon F1 Instance Implementation [TC20]

60

60
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Performance of Homomorphic Multiplication
• Each multiplication takes 4.34 ms.
• The overhead of a ciphertext transfer is 0.11 ms. 

• A single coprocessor achieves 230 multiplications per second. 
• Six coprocessors running in parallel achieves 613 multiplications.

61

61

Comparison
• Achieve 613 homomorphic multiplications per second

• Compared to CPU
o 13x speedup  w.r.t. a highly optimized software on Intel i5  processor, 1.8 GHz

• To GPU on Amazon cloud, 5 times more work for half price and lower power!

62

14.02.2019 - AWS Simple Monthly Calculator: https://calculator.s3.amazonaws.com/index.html 
17.06.2020

62

https://calculator.s3.amazonaws.com/index.html
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Second experiment: ASIC
Acceleration of BGV

Darpa DPRIVE Basalisc project

63

63

BASALISC Memory Hierarchy

MAC Acc –  
8 KB • On CHIP, multiply-accumulator 

MAC Register File 
– 128 KB

• ON CHIP, local 

Cipher Text Buffer – 
64 MB

• ON CHIP, can hold up to 8 cipher texts
• Too small for one key switch matrix

DDR – 256 GB
• ON BOARD
• To store keys, ON BOARD

ON CHIP, Cipher Text Buffer
CTB fits 3 ciphertext pairs

One Key switch 84MB does not fit 

64
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2048 x 32 bits Modular Multiply – Accumulate unit PE 

65

65

66

MACs
distributed 
into memory

(compute in memory)

66
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NTT units with conflict free access to Cipher Text Buffer 

67

67

Third experiment: FPT
FPGA Fixed Point Accelerator for TFHE
Torus Fully Homomorphic Encryption

ERC Advanced Grant Belfort, FWO

68

68
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Challenge: Bootstrap acceleration

69

69

Option 3: Custom Bootstrap HW 

• Peripheral
  = loosely coupled

[Picture: P. Schaumont, “A practical introduction to Hardware/Software Codesign”, 2nd ed70

70
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FPGA: Bootstrap FFT accelerator

71

71

Results

72

• FPGA

• ASIC
• CPU
• GPU
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IACR 2022/1635
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Conclusions – lessons learned

73

• “Provable secure masking” does not mean secure: theory and practice are 
different. 
o Practical evaluation in the lab of theoretical security is a must
o Papers should include artifact evaluation.

• Masking and especially higher order masking are expensive, orders of 
magnitude
o Less stringent, more realistic models
o Reduce randomness requirements

• Fully Homomorphic Encryption
o New research topic for HW acceleration

73
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