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COSIC: “an” ENCRYPTION POWERHOUSE RISES

* Wall Street Journal dd. 10/12/2015: “In Belgium, an Encryption Powerhouse
Rises, University of Leuven has become a battleground in the fight between
privacy and surveillance”

* “Packed with hardware and laptop-wielding students in jeans and sneakers,
COSIC’s labs develop new encryption for corporate clients, or test their in-house
antihacking technology.”

https://www.wsj.com/articles/in-belgium-an-encryption-powerhouse-rises-1449791014

Outline

* Position of cryptography in the design of embedded systems
o Root of trust & secure composition
* Cryptography relies on hardware because it needs:
o Performance (see DES chip)
o Secure implementation: protection against side-channel, fault attacks
o Secure key storage (PUFs)
o Quality random number generators
o Acceleration of new crypto: COED and FHE
* Challenges for crypto to work on
* Conclusions
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NEXT GENERATION EMBEDDED

7
Automotive
“Networked embedded systems interacting with the environment”

HACKERS REMOTELY RILL A
JEEP ON THE HIGHWAY=WITH

NetwopfEJNP| Fecure, authenticated

* Resistant to attacks

Today 58 Melexis chips in TESLA Model Y,

170 Melexis chips in Mercedes EQS 8 w
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How to evaluate security? Where to start?

Passive Keyless Entry and Start System:
Tesla Model X key fob (2020) : mfi/'liﬁaclha"tﬁng? retsporzse ZyTtSe;n
. . authentication (mode
https://youtu.be/clrNuBb3myE . Weak crypto (model S)
+ Secure element, but problems with protocol
(model X)
Off the shelf radios and components

Tesla Model S key fob (2018)
https://youtu.be/aVIYuPzmJoY .

[Lennert Wouters, COSIC]

TRUST AND TRUST BOUNDARIES

10
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Trust Definition

Trust (R. Anderson in “Security Engineering”, after NSA):

* “Trusted system or component is one whose failure can break the security policy, while a
trustworthy system or component is one that won't fail.”

Trust (Trusted Computing Group):
* “An entity can be trusted if it always behaves in the expected manner for the intended purpose.”

Loosely stated: if trusted system or component fails, then bad things can happen.
Goal of security: minimize what needs to be trusted

How does cryptography fit in this context?

1"
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What is the root of trust?

* For network system: router box

* For secure boot: the TPM or SE

* For OS designer: the architecture/micro-architecture of a processor
* For cryptographer: the VHDL or Verilog code on FPGA

* For IOT devices: attack resistance (side-channel, fault, manipulation, etc.)

For digital designer: the standard cells or the technology

12
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HOW: DESIGN METHOD
DECOMPOSE IN COMPONENTS

* Application: secure communication

* Cryptography: public key, secret key,
post-quantum,

* Architecture: Hardware/Software
platform, Sancus

* Micro-architecture: crypto co-
processors, instruction set extension,

* Logic circuits and (secure) memory
* TRNGs and PUFs
* Technology

[P. Schaumont, I. Verbauwhede,
“Design methods for security
and Trust, DATE2007]

“A root of trust is a component at a lower abstraction layer,
upon which the system reliés for its security.”

13

Recent: - — !

REPORT TO THE PRESIDENT
Revitalizing the U.S.

Semiconductor Ecosystem

e US CHIPS and Science Act
* September 2022

Executive Office of the President

President’s Council of Advisors on
Science and Technology

September 2022

14
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(e) Semiconductors and System Security

Criminal and state-sponsored cyber-atjacks-pasa inoth totha lnitad enable
the implementation of secure systemg, every aspect of the system must be c0n51dered ifcluding
sensors, data converters, computin; oviding

robusmess against side-channel attacks and ensurmg securlty of supply chams There is a
i fortbo docign of 4 Imvu- T, nﬁ i

[ security must be pursued as an integral part of design, not as an add-on after the chip is designed.

Academia, industry and government stakeholders have an opportunity to standardize a trusted
approach for systems 1mplementatlon The spec1ﬁc opportumty is to brmg together algorlthm and
software/systems designers_y 3

generation of secure systems
and transparency, they rema

way that enables the United States to contmue to be the global leader in standardlzed securlty
approaches.

We envision a research agenda in this area that should include, but is not limited to, the following:
(1) design for fully secure end-to-end hardware and software solutions that are secure against
various forms of attacks on operation, data, and communications; (2) security in the chip design tool
chain that would enable end-to-end security solutions to be verified by design; (3) secure hardware
supply chain covering chip fabrication, packaging, and system integration; (4) implementation of
post-quantum cryptography; (5) implementation of low-power -cryptography for secure
communications and transactions; and (6) other privacy preserving hardware implementations for
processing encrypted data.

We envision a research agenda in this area that should include, but is not limited to, the following:
(1) design for fully secure end-to-end hardware and software solutions that are secure against
various forms of attacks on operation, data, and communications; (2) security in the chip design tool
chain that would enable end-to-end security solutions to be verified by design; (3) secure hardware
supply chain covering chip fabrication, packaging, and sy, Integration;
post-quantum cryptography; (5) implementation o low-power cryptography
communications and transactions; and (6) other privacy presgrving hardware implea
processing encrypted data.

or secure
€ntations for

16
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DES, AES, ECC, SABER dedicated ASICs

* Feasibility: what is feasible, throughput, latency, power (cooling), energy
(battery lifetime) etc.

CET EEPEECERR B
- e

&
o
3

i

reee

]

Rijndael Saber

* Next: Ilght weight crypto, COED, FHE, . w

Wide range of design options!

HW HW-SW SW
Domain

ASIC FPGA specific CO-proc VLIW GPU  CPU

High Low

Performance/Energy unit
Low
Programmability

Energy — throughput- cost - flexibility trade-of;

High

18
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Throughput — Energy numbers
AES 128bit key Throughput Power Figure of Merit
128bit data (Gb/S/W = Gb/J)
0.18um CMOS
3.84 Gbits/sec 350 mW 1" (1)
FPGA[1] 1.32 Gbit/sec 490 mW 2.7 (114)
Intel ISA for AES [6]
32 Gbit/sec 9B W 034  (1/33)
ASM StrongARM [2] .
31 Mbit/sec 240 mW 0.13 (1/85)
Asm Pentium [II [3] 0.015 (1/800)
648 Mbits/sec araw
C Emb. Sparc [4] .
133 Kbits/sec 120 mW 0.0011 (1/10.000)
Java [5] Emb. Sparc
450 bits/sec 120 mwW 0.0000037 (1/3.000.000)
[1] Amphion CS5230 on Virtex2 + Xilinx Virtex2 Power Estimator
[2] Dag Arne Osvik: 544 cycles AES — ECB on StrongArm SA-1110 [P. Schaumont, and I. Verbauwhede, "Domain specmc
[3] Helger Lipmaa PIIl assembly handcoded + Intel Pentium Il (1.13 GHz) Datasheet de;'%f%fo%’gl]’edded securi
[4] gce, 1 mW/MHz @ 120 Mhz Sparc — assumes 0.25 u CMOS PP
[5] Java on KVM (Sun J2ME, non-JIT) on 1 mW/MHz @ 120 MHz Sparc — assumes 0.25 u CMOS

19

We envision a research agenda in this area that should include, but is not limited to, the fo :
C ecure end-to-end hardware and software solutions that
pperation, data, and communications; (2) security in the thrip-de
c '€ end-to-end security solutions to be verified by design; (3) secure hardware
supply cham covering chip fabrication, packaging, and system integration; (4) implementation of
post-quantum cryptography; (5) implementation of low-power cryptography for secure
communications and transactions; and (6) other privacy preserving hardware implementations for
processing encrypted data.

KU Leu
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21

Side-channel and fault attacks

* Many types of side-channel analysis

o Power, Electro Magnetic (EM), Time,

o Micro-architectural side-channel: cache, transient execution attacks
* Many types of fault or active attacks: RAARRERETE

o EM, laser, clock, voltage glitch, etc. '
* Local or remote
* Combined attacks

21

Contact power
measurements:
-shunt resistors
-current probes

Cost: 150- 5000€

Freq: kHz — MHz range

=3

. UL S
¥
-
&1

B!

22

KU Leu

Measurement methods

Contactless power
measurements:
-EM probes

Cost: 2000 - 25000€

Freq: kHz — GHz range

s
Hgana Ha

are registered

current
proportional measuring

[picture credit: Langer]

EM measurements:
-EM probes

Cost: 2000 - 25000€

Freq: kHz — GHz range

[picture credit: Langer]
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Research challenges for cryptography

* Goal: introduce new research topics, improve existing ones

* Challenge 1: masking is hard in practice

* Challenge 2: masking is expensive

* Challenge 3: Possibilities of PUFs

* Challenge 4: Random number generation

* Challenge 5: NEW — Fully Homomorphic Encryption

23 e

23

Countermeasure: masking

* Types of maskin
P g All start from similar leakage MODEL.:

: Bo.olean. Shares leak independently
o Arithmetic

o Inner product All require randomness

o Threshold

o e

* Two experiments:
o Symmetric key: AES masking on micro controllers
o Public key: Post-quantum masking of lattice based encryption

| e

24
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Masking in practice is HARD

* Experiment: first order SW masked AES evaluated for:

o Side-channel leakage
o Timing
o Randomness requirements

Paper title Published venue | masking method
Provably Secure Higher-Order Masking of AES CHES 2010 boolean

Higher order masking of look-up tables Eurocrypt 2014 | boolean

All the AES You Need on Cortex-M3 and M4 SAC 2016 boolean
Consolidating Inner Product Masking Asiacrypt 2017 | inner product
First-Order Masking with Only Two Random Bits CCS-TIS 2019 boolean
Side-channel Masking with Pseudo-Random Generator | Eurocrypt 2020 | boolean
Detecting faults in inner product masking scheme JCEN 2020 inner product
Fixslicing AES-like Ciphers TCHES 2021 boolean

[A. Becker, L. Wouters, Cosade 2022]

KU Leu
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Results [Cosade 2022]

* Key recovery with first order attack ®

Incorrect TRNG instantiations

* Benchmarking issues @
» Software bugs @

Paper title Published venue | masking method
@ Provably Secure Higher-Order Masking of AES CHES 2010 boolean
@ Higher order masking of look-up tables Eurocrypt 2014 | boolean
@ All the AES You Need on Cortex-M3 and M4 SAC 2016 boolean
Consolidating Inner Product Masking Asiacrypt 2017 | inner product
@ Tirst-Order Masking with Only Two Random Bits CCS-TIS 2019 boolean
® ®® Sidechannel Masking with Pseudo-Random Generator | Eurocrypt 2020 | boolean
Detecting faults in inner product masking scheme JCEN 2020 inner product
@ Fixslicing AES-like Ciphers TCHES 2021 boolean

13
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Correlation Power Analysis (CPA)

* All implementations compiled using given makefile

* Only inserted triggers

* Textbook first order CPA:
o SBOXn or output
o Hamming Weight leakage, or single bit when bitsliced
o 20k traces

* No claims about the mathematical concepts or proofs

Target
STM32F4

KU Leu ) 14
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31

Cause: violation of assumptions

* Assumption: shares leak independently

* Leakage caused by the microcontroller breaks this assumption

o Assume share Aisin r0

o Move share B into rO (and overwrite share A)

o Information on A @ B is leaked! EDA message:

TOOLS could help here!

* Complex processors: transient execution
* Compiler optimizations
* Coupling through power and ground network

* Below 60nm CMOS ‘static’ leakage ,, w

KU Leu
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Research challenges for cryptography

* Goal: introduce new research topics, improve existing ones

* Challenge 1: masking is hard in practice

* Challenge 2: masking is expensive

* Challenge 3: Possibilities of PUFs

* Challenge 4: Random number generation

* Challenge 5: NEW — Fully Homomorphic Encryption

| e

16
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We envnsnon a research agenda in this area that should include, but is not limited to, the following:
C ecure end- to end hardware and software solutlons that are secure agamst

C end to-end secunty solutions to be verlf ed by design; (3) secure hardware
supp i ering chip fabrication, packaging, and system integration; (4) implementation of
ost—quantum cryptography (5) implementation of low-power cryptography for secure
CO! o actions; and (6) other privacy preserving hardware implementations for
processing encrypted data

KU Leu

Lattice Based Post-quantum crypto (NIST)

* KEM = key generation, encapsulation, decapsulation
* CCA secure: Fujisaki — Okamoto transformation
 Similar for

o Kyber r

o Saber Encrypt ct
pk

17
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Cost of decapsulation

* Expensive parts: multiplication, hash, sampling
» Saber vs Kyber

Very similar

Power of two gq= 213
vs g= 3329

MLWR vs MLWE
implicit vs explicit
error addition

(o}

(o}

H(pk)

K

)
2

S/ (i,
D@ ® @D @B
s €

a
>

Arithmetic and Boolean masking

B2A‘l TAQB

0 0 0 0 0
/,69 5|50 |59 | B9 Bpl

\J [ [ [ [ [
2.

A (()0) AgO)

Ag0) AgO) A 510)

J mod ¢

36

Conversion is: Arithmetic to Boolean (A2B) or Boolean to Arithmetic (B2A)
36 W
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Polynomial arithmetic

* Easy to protect with arithmetic masking ri
* Small overhead factors:
s A
o 1.7t02.0(n=2) ...
o 2.96 (n=3) @ Q H(pk)

‘ s ey
’ m' 7 “—MXOF -CBD)L )
s €

K'

n = sharing factor B

@

(=)

>
yes

K=MK c) K =H(z,¢)

M. VanBeirendonck et al. ACM Journal on Emerging Technologies in Computing S?stems 17(2), 25 pages, 2021 [BDK+21]

SHA-3
* Protected with Boolean masking i
s A

* Qverhead factors
* 59t09.26 (n=2)
* 73.1 (n=3)

Hiph) @‘@ v A~

S, li/
D0 @ - @D @B
s €

K

@
=)
=

yes

(K =H(FK' o) (K =H(0)

Depends if you compare to plain-C or
optimized assembly

[Boolean masking: BDPVA10,BBD+16]
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Centered Binomial sampling
* Mix of A2B and B2A
* Expensive!

s
B k) @
. Etc. O, m n

b
(0} ‘

(=)
>
yes

K =H(K',c) K =H(z¢)

no

39

One A2B conversion cost (Saber)

Requires bit-slicing
o 55-61 Kcycles (n=2)
o 172-206 K (n=3)
o 302-365 K (n=4) "
+ randomness

seed s

0

A2B

¥

A2B

¥

A2B

v

[1] Revisiting Higher-Order Masked Comparison for Lattice-Based Cryptography: Algorithms and Bit-
sliced Implementations, D'Anvers J.P., Van Beirendonck M., Verbauwhede ., IACR ePrint 2022/110.

[2] Bitslicing Arithmeti Masking C for Fun and Profit with Application to Latjjge-Based
KEMs, Bronchain O. and Cassiers G., IACR Cryptol. ePrint Arch. 2022: 158 (2022).

40
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Masking is expensive

CPU cycles
1000 Unmasked 1st order 2nd order 3rd order
n=2 n=3

Saber 773 3,011 (1x) 5,534 (1x) 8,591 (1x)
Kyber [2] 804 7,716 (2.56x) 11,880 (2.14x) 16,715 (1.94x)

COST 1x 3.9x — 9.6x 7.2x — 14.8x 11.1x — 20.8x

Random bytes 12 KB 42 KB 90 KB

UTIITIASNTU' T yUUII\JCUJUI QfrTmar UUStU

* Masked Kyber more expensive vs Saber

o Power of

two

o Rounding vs error sampling

* Masking is expensive AND requires randomness

41

Platform: ARM Cortex M4
Framework: PQM4
Compiled: arm-none-eabi-gcc
Version: 9.2.1

42

KU Leu

Research challenges for cryptography

* Goal: introduce new research topics, improve existing ones

* Challenge 1: masking is hard in practice
* Challenge 2: masking is expensive

* Challenge 5: NEW - Fully Homomorphic Encryption
o On FPGA

o OnASIC

| e

21



EUROCRYPT, June 1, 2022

We envision a research agenda in this area that should include, but is not limited to, the following:
(1) design for fully secure end-to-end hardware and software solutions that are secure against
various forms of attacks on operation, data, and communications; (2) security in the chip design tool
chain that would enable end-to-end security solutions to be verified by design; (3) secure hardware
supply chain covering chip fabrication, packaging, and system integration; (4) implementation of
post-quantum cryptography; (5) implementation of low-power cryptography for secure
communjcations gnd transactions; and (6) other privacy preserving hardware implementations for
processing encrypted data.

Fully Homomorphic Encryption

KU Leu ) 22
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Multiple schemes

 Partially homomorphic: Paillier system
*  Somewhat homomorphic:
o Limited number of multiplications
o Fan-Vercauteren:
* Fully Homomorphic Encryption
o Unlimited number of multiplications
o Requires ‘bootstrapping’
* Multiple schemes:
o BFV: Brakerski — Fan — Vercauteren
o BGV: Brakerski — Gentry — Vaikuntanathan

o TFHE: Torus Fully Homomorphic Encryption w

45

Multiple FHE schemes

2013
"'2665” zamA
AN
fast bootstrapping
: branch
2020
>

leveled schemes
branch

“over the integers” branch

[copied from ZAMA website] %

46

KU Leu
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Challenge large numbers:

¢ Experiment 1 [CHES2015] : YASHE (now no longer used, reduced security)

o Ciphertext size 5MB to 20MB (Polynomial size is 32768 (2"15) to 65536 (2"16), modulus
1200 to 2500 bits), could evaluate depth of Simon block cipher

e Experiment 2 [TC2018]: HEPCLOUD, FV

o Ciphertext pair 9.2MB with parameters Polynomial size is 32768 (2215), modulus 1128 bits,
depth 36, 85 bits security level.

o Bottleneck: I/O between FPGA and external memory
¢ Experiment 3 [TC2020]: HEAWS, FV

o Cipher text pair 180KB, with parameters Polynomials size is 4096, modulus min 372 (Q),
180 (q), depth 4, more than 80 bits security.

o Useful for small neural network applications
o Fits on one FPGA

47

DARPA DPRIVE program: in progress

» Dedicated ASIC acceleration of BGV

® 150mm?2 chip in 12nm GF
® Within 10x of plaintext computation S
® 10,000x faster than software reference \ \ PRO] QN IRTE Bt BRMIRONMENTS
® Parameter set for 128-bit security 7 2 MECERS

- Support bootstrapping . < ?

» Four teams of researchers
® Galois, Duality, SRI, and Intel
» Several phases

® Phase 1: design, implementation and verification
of system architecture and IP blocks

Now: phase 2 running, with three teams: Galois, Ddlity and Intel

KU Leu ) 24
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BGV parameters in DPRIVE

Parameter Range Example
Security parameter N/A 128 bits
Ring dimension N 512 — 65536 | 65536

Plaintext modulus p” > 2 1273
Ciphertext packing ¢ 1 — 65536 64 slots

Max log,(QP) for key switching | 20— 1782 | 1782 bits
Max logy (@) for ciphertext 20 — 1263 | 1263 bits
Max multiplicative depth L N/A 31

Ciphertext: 21 MB, Key-switch key: 84 MB

| e

49

Hardware acceleration options

KU LEUVEN

50
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Challenges
 Computational complexity ASIC (phase 1)
o NTT/FFT acceleration * 150 mm?in 12nm WR@
* Memory * Global Foundaries : P
o SIZE * Memory hierarchy
o BANDWIDTH e 57 — 115 Watt
Cloud FPGA

* Alveo U280 (in 5nm or 7 nm)

* Included into Amazon AWS F1
* Memory hierarchy
e 225 Watt! (cooling)

51

KU LEUVEN
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Three experiments — three domain specific processors

FPGA - HEAWS ASIC — DPRIVE - BASALISC FPGA - FPT

* BFV —leveled HE * BGV —includes Bootstrap * TFHE

* 80 bit security * 128 bit security * 128/110 bit security
e Shallow depth * DPRIVE constraints * Alveo U280

* NTT acceleration

* Residue Number System

* Dedicated instruction set

* No cache: compile time known

IEEE TC 2020
IACR 2022/657 IACR 2022/1635

52 oo

52

* FFT acceleration
e Streaming bootstrap

KU Leu
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Option 1: CPU - General purpose process
Programmable ~uRR Apple
Standardized instructions set
Software design

inM
writeM
Instruction ) ) outM Data
Memory instruction 9 Memory
c addressM
(ROM32K) oo (Memory)

Core .

Option 2: Domain specific processing

* Tightly couple: instruction set extension
o Register mapped

o Reuse CPU infrastructure
* Reuse decode, registers, cache, bus network, etc.

o Example AES instructions

* Here: FHE specific operations
o Leads to DOMAIN SPECIFIC PROCESSORS

54 e

54
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Option 3: Domain specific co-processor

Inside CPU
= custom ISA

Local bus
= tight coupled

Peripheral
= loosely coupled

external
memory
CPU Memory ¥ EE ¥ EE
custom dp ’
Memory . Parallel
1$ | D$ Controller Timer /O
Local $High-speed : Peripheral
Bridge
Bus Bus Bu
\
Custom DMA Bus UART Custom
HW ) Master HW

Se——r

M

[Picture: P. Schaumont, “A practical introduction to Hardware/Software Codesign”, 2" ed

56

KU Leu

Xilinx XC4000ex (OLD!)

FPGA

* Field Programmable Gate Array

Hardware technology: FPGA versus ASIC

ASIC
* Application Specific Integrated Circuit

PCle 4.0 X16 Controller ||

28
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FPGA: Program look-up tables and interconnect
0123
0123
CONNECTION BLOCK
c: ' CLB
Logic Block e o rEton
—
=l |= INPUTS::: 4-LUT ! —» OUTPUT
Buy FPGA, write VHDL or Verilog —
Synthesis, place and route o AN
load onto FPGA (in the cloud N ]
4-input "look up table’

57

First experiment: FPGA

Acceleration of BFV on Amazon cloud

KU LEUVEN

58
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59

URAM - 33 MB
HBM - 8 GB

DDR -32 GB ON BOARD

FPGA Memory Resources (Alveo U280)

BRAM -9 MB

LOCAL ON CHIP

IN PACKAGE, 3D

Amazon F1 Instance Implementation [TC20]

SW Application

AWS API

C]

&
1

PCI Bus

KU Leu

AWS Shell

AXI Interconnect

Coprocessor 5

[Coprocessor ...

Coprocessor 0

AXI Interconnect

Mem 0

Lift/Scale

Mem 1

Mem ...

INTT

Mem 7

—

RPAUs

- L
o
E
60 m
60
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Performance of Homomorphic Multiplication

* Each multiplication takes 4.34 ms.
* The overhead of a ciphertext transfer is 0.11 ms.

* Asingle coprocessor achieves 230 multiplications per second.
* Six coprocessors running in parallel achieves 613 multiplications.

| e

61
Comparison
* Achieve 613 homomorphic multiplications per second
* Compared to CPU
o 13x speedup w.r.t. a highly optimized software on Intel i5 processor, 1.8 GHz
* To GPU on Amazon cloud, 5 times more work for half price and lower power!
Ci A EC2
W\ Instances | Usage Type Billing Option /%
1FPGA -> 2000 Mult \ 1| 100 %Utilized/Mcv |Linuxon fl.2xlarge @ |On-Demand (No CY‘ 4 120750
1GPU -> 388 Mult / 1] 1200 | %Utilized/Mee |Linux on p3.2xlarge Jjor Demand (No C\O DERP
N’
14.02.2019 - AWS Simple Monthly Calculator: https://calculator.s3.amazonaws.com/index;
17.06.2020 o
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Second experiment: ASIC

Acceleration of BGV

Darpa DPRIVE Basalisc project

KU LEUVEN
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BASALISC Memory Hierarchy

MAC Acc -

8 KB
MAC Register File ON CHIP, Cipher Text Buffer
— 128 KB CTB fits 3 ciphertext pairs
Cipher Text Buffer — One Key switch 84MB does not fit
64 MB

DDR - 256 GB ON BOARD
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2048 x 32 bits Modular Multiply — Accumulate unit PE

MAC PE
16-entry RF |«
;J ™~
~ 0 —» «
- 3
x s
3 >
b .| —
o,
_»\ ™
x 5
= s
a - |
D TP

Add / Sub /Acc - ACCout
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DDR4

DDR4

2x2mm

NTT PE
2x2mm

NTT PE
2x2mm

PCle | PCle | PCle
X4 X4 X4

PCle
X4

NTT PE
pecel 2 X 2Mmm

NTT PE™

3

" et BKaga L xGh
bt BG4 Lo axxBa
I .
et BB L axxeo
xt BKaB4 BOS4 BxBL
Permutation PE
xes BKaB4 B4 x4
ot Bk Ly b

TG\ L
et WxB4
sl =3

=

PCle 4.0 X16 Controll

ler
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NTT units with conflict free access to Cipher Text Buffer

Pre-mul 4-point NTT  Post-mul

1 Radix-256 butterfly
® 65536-point NTT with 2 passes

2 Twiddle-factor factory unit
3 Conflict-free data layout
32 Th/s NTT throughput w}

Example radix-4 butterfly

5, e
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Third experiment: FPT

FPGA Fixed Point Accelerator for TFHE
Torus Fully Homomorphic Encryption
ERC Advanced Grant Belfort, FWO

KU LEUVEN
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Challenge: Bootstrap acceleration

Other: 1.96%
Key Switching: 19.12%

In1

deuisjooq

Bootstrapping: 78.92%

desysjooq

In2 —

deusiooq

deuisjooq
| f

In3
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Option 3: Custom Bootstrap HW

external
memory
CPU Memory ¥ EE ¥ EE
Memory . Parallel
r 1$ | D$ Controller Timer /O
Local $High-speed : Peripheral
Bridge
. Bus Bus Bu
* Peripheral \% VA B
— Custom us ART Custom
= loosely coupled W Master U W

[Picture: P. Schaumont, “A practical introduction to Hardware/Software Cddesign”, 2" ed
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FPGA: Bootstrap FFT accelerator

Dotproduct-unrolled FFT-unrolled

N
Results & N
& S
<& & s
& & S
Qo g $
9 ~ <
| LUT /FFs/DSP /BRAM | f(MHz) | I (ms) | TP (PBS/ms)
« FPGA FPT | 595K / 1024K /5980 / 145Mb | 200 | 058 | 25.0
- 842K / 662K / 7202 / 338Mb | 180 | 3.76 35
442K / 342K / 6910 / 409Mb | 180 | 1.88 27
« ASIC  MATCHA | 36.96mm? 16nm PTM | 2000 | 02 | 10
« CPU  CONCRETE | Intel Xeon Silver 4208 | 2100 | 32 | 0.03
+ GPU cuFHE | NVIDIA GeForce RTX 3090 | 1700 | 9.34 | 9.6
1 IACR 2022/1635
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* “Provable secure masking” does not mean secure: theory and practice are
different.

o Practical evaluation in the lab of theoretical security is a must
o Papers should include artifact evaluation.

* Masking and especially higher order masking are expensive, orders of
magnitude

o Less stringent, more realistic models
o Reduce randomness requirements
* Fully Homomorphic Encryption
o New research topic for HW acceleration

73

(e) Semiconductors and System Security

Criminal and state-sponsored cyber-atjacks-pasa nath tothaellnitad enable
the implementation of secure system§, every aspect of the system must be considered ijcluding
sensors, data converters, computinimWWﬁowdmg
robustness against side-channel attacks and ensurmg securlty of supply chams There is a

e 4 i for +h Anmnn £ d lm'n L i £E

[ security must be pursued as an mtegral part of design, not as an add-on after the chip is designed.

Academia, industry and government stakeholders have an opportunity to standardize a trusted
approach for systems 1mplementatlon The spec1ﬁc opportumty is to brmg together algorlthm and
software/systems designers_with_chip de 0 en develop the ne

generation of secure systemg Although ope urce securlty approaches are the best for mnovatmn
e

and transparency, they rema

way that enables the United States to contmue to be the global leader in standardlzed securlty
approaches.

We envision a research agenda in this area that should include, but is not limited to, the following:
(1) design for fully secure end-to-end hardware and software solutions that are secure against
various forms of attacks on operation, data, and communications; (2) security in the chip design tool
chain that would enable end-to-end security solutions to be verified by design; (3) secure hardware
supply chain covering chip fabrication, packaging, and system integration; (4) implementation of
post-quantum cryptography; (5) implementation of low-power cryptography for secure
communications and transactions; and (6) other privacy preserving hardware implementations for
processing encrypted data.
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