

AES 128bit key 128bit data	Throughput	Power	Figure of Merit (Gb/s/W = Gb/J)	
0.18um CMOS	3.84 Gbits/sec	350 mW	11 (1/1)	
FPGA [1]	1.32 Gbit/sec	490 mW	2.7 (1/4)	
Intel ISA for AES [6]	32 Gbit/sec	95 W	0.34 (1/33)	
ASM StrongARM [2]	31 Mbit/sec	240 mW	0.13 (1/85)	
Asm Pentium III [3]	648 Mbits/sec	41.4 W	0.015 (1/800)	
C Emb. Sparc [4]	133 Kbits/sec	120 mW	0.0011 (1/10.000)	
Java [5] Emb. Sparc	450 bits/sec	120 mW	0.0000037 (1/3.000.000)	
[1] Amphion CS5230 on Virtex2 + Xili [2] Dag Arne Osvik: 544 cycles AES – [3] Helger Lipmaa PIII assembly han [4] gcc, 1 mWMHz @ 120 Mhz Spart	IX Virtex2 Power Estimator ECB on StrongArm SA-1110 Jooded + Intel Pentium III (1.13 GHz) - assumes 0.25 u CMOS	Datasheet	[P. Schaumont, and I. Verbauwhede, "Domain spe codesign for embedded security," Computer 36(4) pp. 68-74, 2003.]	

_	er in in in in in in in indexed ALS ev	aluated for.	
0	Side-channel leakage		
0	Timing		
	Randompess requirements		
0			
	Paper title	Published venue	masking method
:	Provably Secure Higher-Order Masking of AES	CHES 2010	boolean
	Higher order masking of look-up tables	Eurocrypt 2014	boolean
	All the AES You Need on Cortex-M3 and M4	SAC 2016	boolean
	Consolidating Inner Product Masking	Asiacrypt 2017	inner product
	First-Order Masking with Only Two Random Bits	CCS-TIS 2019	boolean
	Side-channel Masking with Pseudo-Random Generator	Eurocrypt 2020	boolean
	Detecting faults in inner product masking scheme	JCEN 2020	inner product
-	Fixslicing AES-like Ciphers	TCHES 2021	boolean

-

-

x1000 Scheme	Unmasked	1 st order n=2	2 nd order n=3	3 rd order n=4	
Saber	773	3,011 (1x)	5,534 (1x)	8,591 (1x)	
Kyber [2]	804	7,716 (2.56x)	11,880 (2.14x)	16,715 (1.94x)	
COST	1x	3.9x – 9.6x	7.2x – 14.8x	11.1x – 20.8x	
Random bytes		12 KB	42 KB	90 KB	
 Masked Kyber more expensive vs Saber Power of two Rounding vs error sampling Masking is expensive AND requires randomness 					

Three experiments – three domain specific processors				
FPGA - HEAWS	ASIC – DPRIVE – BASALISC	FPGA - FPT		
 BFV – leveled HE 80 bit security Shallow depth 	 BGV – includes Bootstrap 128 bit security DPRIVE constraints 	TFHE128/110 bit securityAlveo U280		
NTT accResidueDedicateNo cach	eleration Number System ed instruction set e: compile time known	FFT accelerationStreaming bootstrap		
IEEE TC 2020	IACR 2022/657	IACR 2022/1635		
		KU LEUVEN		

KU Leu

-

Resu	lts		Clock Bold	To. Tologey	nouchour and a second
		LUT / FFs / DSP / BRAM	f (MHz)	l (ms)	TP (PBS/ms)
FPGA	FPT	595K / 1024K / 5980 / 14.5Mb	200	0.58	25.0
	YKP	842K / 662K / 7202 / 338Mb 442K / 342K / 6910 / 409Mb	180 180	3.76 1.88	3.5 2.7
ASIC	МАТСНА	36.96mm ² 16nm PTM	2000	0.2	10
CPU	CONCRETE	Intel Xeon Silver 4208	2100	32	0.03
• GPU	cuFHE	NVIDIA GeForce RTX 3090	1700	9.34	9.6
		72	IACR	2022/1635	5 KU LEUVEN

