Formal verification of electronic voting systems

Véronique Cortier, CNRS, Loria (Nancy, France)

June 8th, 2023

UNIVERSITE 7 o v Loria
DE LORRAINE &z%

1/55

Why e-voting?

» Convenient
—— for voters: vote from home, or abroad
— for authorities: easier to record and tally votes

» More “democracy”
— complex tally process (Condorcet, STV, IRV)
— can be used more often
— complex legal rules
(a voter may vote from any place in their state)

» Many protocols have been proposed:
Helios, Belenios, Civitas, Prét-a-Voter, Selene, CHVote, sElect,
StarVote, ...

2/55

Two main families for electronic voting

Voting machines

> Voters attend a polling station;
> Standard authentication (id cards, etc.)

Internet Voting

> Voters vote from home;
» Using their own computer
(or phone, tablet, ...)

3/55

Internet voting is used in various countries

4/55

» France: National parliament for the French expats (2012, 2022)

> Australia: New South Wales state (2021, more than 650 000
votes cast by Internet)

> Estonia: local elections (since 2005), national parliamentary
elections (2007, 2011, 2015, 2019)

> Switzerland: several trials, a demanding and evolving
regulation since 2013

» Canada: local election in Ontario (since 2003) and Nova Scotia
(since 2006)

5/55

..banned in other countries !

» Netherland: 2008, electronic voting is abolished (voting
machine and Internet)

» Germany: 2009, the voting machines (Nedap) are rejected, do
not comply with the constitution

It must be possible for a citizen to check the main steps of a
voting process, with no special expertise.
» Norway: trials ended in 2013

The fear of voters that their vote might become public may
undermine the democratic process.

Widely used in non-political election

> professional elections
P> associations
» administration councils

» scientific councils

6/55

Numerous attacks !

Elections in Moscow [P. Gaudry]
> ballots posted on a blockchain (why?)
> bug bounty program

ﬂ&b 3 keys of 256 bits # 1 key of 768 bits

7/55

Numerous attacks !

~ Elections in Moscow [P. Gaudry]
‘ > ballots posted on a blockchain (why?)
> bug bounty program

nin 3 keys of 256 bits # 1 key of 768 bits

Swiss context
> open specification, open source code
> call for public scrutiny

> multiple elections in one round SWiss POST '

7/55

Numerous attacks !

~ Elections in Moscow [P. Gaudry]
> ballots posted on a blockchain (why?)
> bug bounty program

n‘&n 3 keys of 256 bits # 1 key of 768 bits

Swiss context
> open specification, open source code

> call for public scrutiny

> multiple elections in one round SWiss POST '
ﬂi’» Privacy breach with A. Debant and P. Gaudry
> possibility to (silently) add an extra ballot box, with just Alice’
ballot

> a generous bug bounty &

7/55

What is a good voting system?

8/55

Confidentiality of the votes

Vote privacy
"No one should know how [voted"

9/55

Confidentiality of the votes

Vote privacy
"No one should know how [voted"

Better: Receipt-free / Coercion-resistant
“No one should know how [voted,
even if | am willing to tell my vote! "

9/55

Confidentiality of the votes

Vote privacy
"No one should know how [voted"

Better: Receipt-free / Coercion-resistant
“No one should know how [voted,
even if | am willing to tell my vote! "

> vote buying
P coercion y ’ﬁ

anonymous marketplace

9/55

Confidentiality of the votes

Vote privacy
"No one should know how [voted"

Better: Receipt-free / Coercion-resistant
“No one should know how [voted,
even if | am willing to tell my vote! "

> vote buying
> coercion y ’ﬁ

Everlasting privacy: no one should know my vote, even when the
cryptographic keys will be eventually broken.

anonymous marketplace

9/55

Verifiability
Individual Verifiability: a voter can check that

P> cast as intended: their ballot contains their intended vote
» recorded as cast: their ballot is in the ballot box.

Universal Verifiability: everyone can check that

> tallied as recorded: the result corresponds to the ballot box.
> eligibility: ballots have been casted by legitimate voters.

D\

You should verify the election,
not the system.

10/55

Verifiability
Individual Verifiability: a voter can check that

P> cast as intended: their ballot contains their intended vote
» recorded as cast: their ballot is in the ballot box.

Universal Verifiability: everyone can check that

> tallied as recorded: the result corresponds to the ballot box.
> eligibility: ballots have been casted by legitimate voters.

D\

You should verify the election,
not the system.

Even better: accountability

> the system tells whom to blame

> eases dispute resolution
10/55

And many more properties

> Availability: servers available at any time

> Accessibility: easy to use, adapted to people with various issues
> ...

11/55

| should not be able to prove how | voted, yet | should be able to
check that my vote has been counted...

v’

pe

12/55

| should not be able to prove how | voted, yet | should be able to
check that my vote has been counted...

v’

pe

Let's see how this can be realized.

12/55

Voting protocol Belenios

» variant of Helios, designed by
Ben Adida

> developed at Loria, teams Pesto
and Caramba (P. Gaudry)
BE oS Developer: Stéphane Glondu

» used in 2000+ elections, with a
total of 100 000+ voters

http://www.belenios.org/

> confidentiality of the votes

> verifiability of the voting process
— The ballot box is public at any time.

— All the operations (tally, ...) can be checked by anyone.

13/55

http://www.belenios.org/

Building blocks: cryptography

14/55

Threshold decryption

> Each trustee computes their secret key
> The n trustees jointly compute the public key pk

» Decryption with t out of the n keys:
t out of n trustees suffice to produce decryption shares, that

yield the plaintext

15/55

Threshold decryption

> Each trustee computes their secret key
> The n trustees jointly compute the public key pk

» Decryption with t out of the n keys:
t out of n trustees suffice to produce decryption shares, that

yield the plaintext

— The decryption key is never present on a single computer,
neither during the key generation nor the decryption!

15/55

Zero-Knowledge proofs

ZERO KNOWLEDGE PROOF
S : 2L/
Prover Verifier

Examples

> Possibility to prove that an encrypted message is either a or b

{m}x Proof(m=aor m=b)

> Possibility to prove that the decryption is correct
¢, m Proof(deck(c) = m)

16/55

How Belenios works (simplified)
Phase 1: vote
pk(E)
~ Ballot Box
) Alice {VA}pk(E) va=0o0r1l
/j Bob {VB}pk(E) vg=0o0r1
Chris {VC}pk(E) Ve = Oorl

pk(E): public key, the private keys are shared among the authorities.
17/55

How Belenios works (simplified)

Phase 1: vote
pk(E)

< Ballot Box
v id, {v}/, e Alice | {valpkey va=0orl
‘/j Bob {VB}pk(E) vg=0o0r1
Chris {Vc} k(E) Ve = Oorl
/\ p
- =

pk(E): public key, the private keys are shared among the authorities

17/55

How Belenios works (simplified)
Phase 1: vote

pk(E)
“ Ballot Box
) ¥ Alice {VA}pk(E) va=0o0r1l
/j Bob {VB}pk(E) VB = Oorl
/‘\ Chris {VC}pk(E) Ve = Oorl
- David {VD}pk(E) VD = Oorl

pk(E): public key, the private keys are shared among the authorities.
17/55

How Belenios works (simplified)
Phase 1: vote

pk(E)
~ Ballot Box
W, Alice {VA}pk(E) VAo = Oorl
/j Bob {VB}pk(E) VB = Oorl
/‘\ Chris {VC}pk(E) Ve = Oorl
Dl David {VD}pk(E) VD = Oorl

Phase 2: Tally - homomorphic encryption (El Gamal)
{Vl}pk(E)X' : 'X{Vn}pk(E) = {vi+-- “"Vn}pk(E) since g?xg” = g?**

— Only the final result needs to be decrypted! And proved.

pk(E): public key, the private keys are shared among the authorities.

17/55

Oversimplified!

pk(E)
N Ballot Box
V., id,{v}F’)kE Alice {VA}pk(E) va=0or1l
/j Bob {VB}pk(E) vg=0or1l
/‘\ Chris {VC}pk(E) Ve = Oorl
S David {VD}pk(E)

Result: {va+ vg+ vc+vp+ - }ok(E)

18/55

Oversimplified!

pk(E)
< Ballot Box
W, id, {v} ke Alice {VA}pk(E) va=0or1l
/j Bob {VB}pk(E) vg=0or1l
Chris {Vc} k(E) Ve = Oorl
/\ P

- David {VD}pk(E) VD = 100

Result: {va + vg + vc + 100 + - } (k)

A voter could cheat!

18/55

Oversimplified!

pk(E)
< Ballot Box
W, id, {v} ke Alice {VA}pk(E) va=0or1l
/j Bob {VB}pk(E) vg=0or1l
/\ Chris {VC}pk(E) Ve = Oorl
S David {VD}pk(E) VD%:LQG

Result: {va+vg+vc+vp+--- }pk(E)

B e

Use a zero-knowledge proof

{VD}pk(E)7 Proof{vp =0 or vp =1}

18/55

Still oversimplified

pk(E)
) Ballot box

W, id, {V};kE Alice {VA}pk(E)
'/j Bob | {ve}pk(E)
/\ Shris j{.T/C}pk(E)

19/55

Still oversimplified

pk(E)
< Ballot box
La id, (v}, Alice | {va}pk(E)
1// — Bob | {ve}ppE)
Chris | {vc}ok(E)
!\; {1} ok(e)
{1}pk(e)

The ballot box could add ballots!

19/55

Still oversimplified

pk(E) vk(creds), vk(cred1), vk(cred2), ...

< Ballot box
"j id, {v} e Alice {VA}pk(E)
< Bob | {vB}pk(E)
Chris | {vc}pk(E)
!L
Theballotbox—could-add-balletst

1. During the setup phase, a Registrar generates private signing
keys, one for each voter

19/55

Still oversimplified

pk(E) vk(creds), vk(cred1), vk(cred2), ...

5 Ballot box
v id, {v}' g Alice [{VA} k(E)]sk(cred)
4 i i 1
Bob [{VB}pk(E)]sk(cred2)
Chris [{VC}pk(E)]sk(cred3)
4]

1. During the setup phase, a Registrar generates private signing

keys, one for each voter
2. The voters sign their ballot with a “credential” they have
received (a credential = a right to vote)

19/55

20/55

Some additional features

Many cryptographic features:
> blank votes: select 3 to 5 candidates among 10 OR vote blank

> threshold decryption: 5 out 7 trustees are sufficient to decrypt
> support both homomorphic encryption and mixnets

» rank candidates: Condorcet, STV

» score candidates: Majority Judgement

Multi-languages: English, French, German, Spanish, Czech,
Norwegian, Portuguese, Greek, ltalian, ...

— Just add yours! (easy, Weblate platform)

How Belenios is used?

21/55

since 2020:

vvyyy

about 1500 elections / year on our voting platform
100 000+ ballots cast in total

about 25 independant voting servers
initial users
» universities for councils representatives, hiring commitees
» many sport associations (chess, handball) or other associations
» companies for representatives
but also:
» FDP party (Germany)
» European Court of Accounts (ECA)
» Université Libre de Bruxelles (ULB)
» ltalian Scouts Federation

Distribution of Belenios

There are two ways for running an election with Belenios.

1. Install your own server. Belenios is an open-source software,
available at:

https://gitlab.inria.fr/belenios/belenios

2. Use our online voting platform:

https://belenios.loria.fr/admin

» the administrator can set up an election and manage the
election authorities

» the decryption trustees can generate (locally) their private key
in their browser (also in the threshold mode)

» the registrar can generate (locally) all the credentials in their
browser. They then need to send the credentials to the voters
(typically by email).

22/55

https://gitlab.inria.fr/belenios/belenios
https://belenios.loria.fr/admin

Formal analysis of e-voting systems

Why a formal analysis of an e-voting system?

23/55

Formal analysis of e-voting systems

Why a formal analysis of an e-voting system?

—— Because formal methods can find attacks before
implementations

— Now a current practice for many protocols (TLS, 5G, ...)

23/55

Formal analysis of e-voting systems

23/55

Why a formal analysis of an e-voting system?

— Because formal methods can find attacks before
implementations

— Now a current practice for many protocols (TLS, 5G, ...)

— Legal requirements in Switzerland to provide symbolic and
cryptographic proofs of e-voting protocols.

2.14 Proofs of compliance with the cryptographic protocol requirements

2.14.1 A symbolic and a cryptographic proof of compliance must demonstrate that the cryptographic protocol
meets the requirements in Numbers 2.1-2.12.

2.14.2 The proofs of compliance must directly refer to the protocol description that forms the basis for system
development.

2.14.3 The proofs of compliance relating to basic cryptographic components may be provided according to
generally accepted security assumptions and constructions (e.g. «random oracle model», «decisional Diffie-
Hellman assumption», «Fiat-Shamir heuristic»).

Two main models for security

H Formal approach ‘ Computational approach
{}
7\
{(y) k 0101000101110101
M /7 N\ 1101010110101010
essages A Na 0011101011101101
bitstrings
Encryption terms algorithm
Adversary idealized any polynomial algorithm
Guarantees || some attacks missed stronger
. mostly by hand
Proof often automatic difficult for complex protocols

24/55

Messages
Messages are abstracted by terms.

Agents : a, b, ... Nonces : ni,n, ...

Keys : kl, /(2, e

Ciphertext : aenc(pk, r,m) Concatenation : pair(my, my)
denoted simply (my, my) in ProVerif

Example: The encrypted message aenc(pk, r, pair(vi, v»)) is
represented by:

Intuition: only the structure of the message is kept.
25 /55

Model for cryptographic primitives
Projection

m1(pair(x,y)) = x

m2(pair(x, y))

y

Asymmetric and symmetric encryption
adec(aenc(pk(y), z,x), y) = x

dec(enc(x, y), y) = x

26/55

Model for cryptographic primitives
Projection

m1(pair(x,y)) = x

m2(pair(x, y))

y

Asymmetric and symmetric encryption
adec(aenc(pk(y), z,x), y) = x

dec(enc(x, y), y) = x

Zero knowledge proof: proof of valid vote
aenc(pk, r,m),ZKP(m=0 OR m=1)

Valid(ZKP(aenc(pk, r, 0), pk, r), aenc(pk, r, 0), pk)
Valid(ZKP(aenc(pk, r, 1), pk, r), aenc(pk, r, 1), pk)

26/55

ok
ok

Syntax for processes

The grammar of processes is as follows:

P,Q,R:=
0
if M; = M, then P else Q
let x=Min P
in(c, x); P
out(c, N); P
new n; P
Pl @
P

Syntax of ProVerif, a dialect of the applied-pi calculus
[AbadiFournet01]

27/55

Example: Belenios light

A — S ida,aenc(pkE, ra, vo)
B — S idg,aenc(pkE,rg,v1)
S — {V(), Vl}

r, random number generated by A.
rp, random number generated by B.

28/55

Example: Belenios light

A — S ida,aenc(pkE, ra, vo)
B — S idg,aenc(pkE,rg,v1)
S — {Vo, Vl}

r, random number generated by A.
rp, random number generated by B.

We need to model two processes:

> one corresponding to the role of a voter

> one corresponding to the role of the server

28/55

Role of a voter

yj id,{v}")kE

free c : channel.

let Voter(pkE, Vote, id, cauth) =

29/55

Role of a voter

?)’ id,{v}")kE

free c : channel.
let Voter(pkE, Vote, id, cauth) =

new r : bitstring;
let b = (id, aenc(pkE, r, Vote)) in

29/55

Role of a voter

;}’ id,{v}")kE
/\
o S

free c : channel.

let Voter(pkE, Vote, id, cauth) =

new r : bitstring;
let b = (id, aenc(pkE, r, Vote)) in

out(cauth, b);
out(c, b).

29/55

Security properties

Secrecy query
Notr attacker(s)

30/55

Security properties

Secrecy query
Notr attacker(s)

Correspondence query Fi1,...,F, = ¢

Example:
Voted(id, v, r) A EndTally = Counted(v)

30/55

How to model vote privacy in symbolic models?

How to state formally:
"No one should know my vote (0 or 1)"?

Idea 1: An attacker should not learn the value of my vote.

31/55

How to model vote privacy in symbolic models?

How to state formally:
"No one should know my vote (0 or 1)"?

Idea 1: An attacker should not learn the value of my vote.

But everyone knows 0 and 1!

31/55

How to model vote privacy in symbolic models?

How to state formally:
"No one should know my vote (0 or 1)"?

Idea 2: An attacker cannot see the difference when voters are
different Voter(A, 0) ~ Voter(B,0)

31/55

How to model vote privacy in symbolic models?

How to state formally:
"No one should know my vote (0 or 1)"?

Idea 2: An attacker cannot see the difference when voters are
different Voter(A, 0) ~ Voter(B,0)

Who voted might be public

31/55

How to model vote privacy in symbolic models?

How to state formally:
"No one should know my vote (0 or 1)"?

Idea 3: An attacker cannot see the difference when | vote 0 or 1.

Voter(A,0) ~ Voter(A, 1)

31/55

How to model vote privacy in symbolic models?

How to state formally:
"No one should know my vote (0 or 1)"?

Idea 3: An attacker cannot see the difference when | vote 0 or 1.
Voter(A,0) ~ Voter(A, 1)

> The attacker always sees the difference since the tally differs.
» Unanimity does break privacy.

31/55

How to model vote privacy in symbolic models?

How to state formally:
"No one should know my vote (0 or 1)"?

Idea 4: An attacker cannot see when votes are swapped.
Voter(A, 0) | Voter(B, 1) ~ Voter(A, 1) | Voter(B,0)
S. Kremer & M. Ryan

31/55

ProVerif: automatic analysis of protocols
Developed by Bruno Blanchet and Vincent Cheval

Performs very well in practice!

> Works on most of existing protocols in the literature

» |s also used on industrial protocols (e.g. TLS, Signal, ...)
> used to pass Swiss requirements on voting

» Neuchétel/Scytl protocol [C., Turuani 2018]
» CHVote protocol [C., Turuani 2019]

32/55

ProVerif: automatic analysis of protocols
Developed by Bruno Blanchet and Vincent Cheval

Performs very well in practice!

> Works on most of existing protocols in the literature

» |s also used on industrial protocols (e.g. TLS, Signal, ...)
> used to pass Swiss requirements on voting

» Neuchétel/Scytl protocol [C., Turuani 2018]
» CHVote protocol [C., Turuani 2019]

— ProVerif translates processes in applied pi-calculus into Horn
clauses (first-order logic).

32/55

Intruder

Horn clauses perfectly reflects the attacker symbolic manipulations

on terms.
VxVy I(x),I(y) = I(enc(x,y)) encryption
VxVy I(enc(x,y)), I(y) = I(x decryption
VxVy I(x),I(y) = I(<x,y>) concatenation
VxVy I(<x,y>) = I(x) first projection
VxVy (< x,y>) = I(y) second projectiot

33/55

Protocol as Horn clauses

let Voter(pkE, Vote, id, cauth) =

new r : bitstring; .)
let b = (id, aenc(pkE, r, Vote)) in b e
event Voted(id, Vote, r)

/(

out(cauth, b);
out(c, b).

Each action of the protocol is translated into logical implications.

Vv I(v) = I({id,aenc(pkE, r(v), v))
Vv I(v) = Voted(id,v,r(v))

34/55

Security reduces to consistency

35/55

secure?

VxVy 1(x),I(y) = I(<x,y>)
VxVy 1(x), I(y) = I(enc(x,y))
VxVy I(enc(x,y)),I(y) = I(x)
VxVy I(<x,y>) = I(x)
VxVy (<x,y>) = I(y)

Vv I(v) = I({id,aenc(pkE, r(v), v))
Vv I(v) = Voted(id, v, r(v))

Security reduces to consistency

35/55

VxVy
VxVy
VxVy
VxVy
VxVy

Yv
Vv

I(v)
I(v)

=
= Voted(id, v, r(v))

N A

Nor /(secret)
(< x,y >)
I(enc(x,y))
(x)

(x)

(

/
/
I(y)

I({id, aenc(pkE, r(v), v))

secure?

Does not yield a
contradiction ?

(i.e. consistent
theory ?)

How to know if a set of formula is consistent ?

36/55

Hilbert's program (1928)
“Entscheidung Problem”

David Hilbert

It is undecidable! (1936)
— There is no algorithm that answers
this question.

Alan Turing

(at a time with no computers)

Security reduces to consistency: but undecidable!

37/55

secure?

VxVy 1(x),I(ly) = I(<x,y>)
VxVy I(x),1(y) = I(enc(x,y))
Vxvy I(enc(x,y)), I(y) = I(x)
VxVy I(<x,y>) = Ix)
VxVy (<x,y>) = Iy)

Vv I(v) = I({id,aenc(pkE, r(v),v))
Vv I(v) = Voted(id, v, r(v))

Security reduces to consistency: but undecidable!

37/55

VxVy
VxVy
VxVy
VxVy
VxVy

Vv
Vv

I(v)
I(v)

EN
= Voted(id, v, r(v))

secure?

All this for nothing?

LR R

Nor /(secret)

(< x,y >) Does not yield a
/Eer)lC(X ' Y)) contradiction ?
I(x) - i

1) (i.e. consistent

theory ?)

1({id, aenc(pkE, r(v), v))

A standard technique: resolution
Idea: add logical consequences ...

VxP(x) = I(s(x))
Vxl(x) = P(s(x))
P(0)
—I(s(s(s(0))))

. until a contradiction is found.

38/55

A standard technique: resolution
Idea: add logical consequences ...

YxP(x) = I(s(x))
Vxl(x) = P(s(x))
P(0)
=(s(s(s(0))))

. until a contradiction is found.

39/55

A standard technique: resolution
Idea: add logical consequences ...

VxP(x) = I(s(x))
Vxl(x) = P(s(x))
P(0)
—I(s(s(s(0))))

. until a contradiction is found.

40/55

A standard technique: resolution

Idea: add logical consequences ...

VxP(x) = I(s(x))
Vxl(x) = P(s(x))

P(0)
—1(s(s(s(0))))

. until a contradiction is found.

Ideally, we need a method (a strategy) which is:

> correct: adds formula that are indeed consequences
» complete: finds a contradiction (if it exists)
> in a finite number of steps

41/55

A standard technique: resolution

Idea: add logical consequences ...

VxP(x) = I(s(x))
Vxl(x) = P(s(x))

P(0)
—1(s(s(s(0))))

. until a contradiction is found.

Ideally, we need a method (a strategy) which is:

> correct: adds formula that are indeed consequences

» complete: finds a contradiction (if it exists)

> ina-finite-numberof-steps undecidable fragment

41/55

ProVerif

» Implements a correct procedure (that may not terminate or just
stop without answer).

> Based on a resolution strategy well adapted to protocols.

@—) Translation into Horn clauses Saturation of Horn clauses

Verification of the query

42 /55

Binary resolution

H=C F,H =CC

with o substitution s.t. Co = Fo
Ho,H'o = Clo

> correct

» but adds too many clauses (never terminates)

43/55

Binary resolution

H=C F,H =CC
Ho,H'o = Clo

with o substitution s.t. Co = Fo

F # 1(x)

> correct

» but adds too many clauses (never terminates)

ProVerif's strategy:
» do not resolve on /(x)

Theorem: it remains refutationally complete

» well crafted order of resolution

43/55

Example

C={~I(s), I(ki), 1({S}iks,kr))>
I({x}y) Iy) = 1(x), 1(x),I(y) = I({(x,y))

I(ki) 10x), I(y) = 1({x,)

I{s} k) 1{x3) 1) = 1<) (ki) I(y) = I((ki, ¥))
I((ki, k1)) = s I((ka, ki)
~I(s) I(s)
L

44/55

But it is not terminating!

I(s) 1(x),I(y) = I({(x,y))
I(s) I(y) = I({s,y))
I(y) = 1({s,y)) I({s,s))
I(y) = 1({s,y)) I((s, (s,s)))

— Hence ProVerif never resolves on I(x), I(y), ...

45 /55

Global state in ProVerif

A small protocol

A — enc(s, (ki, k2))
enc(ky, k)
enc(ko, k)

B «+ enc(x,k)

— X once

46 /55

Global state in ProVerif
Horn clauses C
A small protocol
= I(enc(s, (ki, k2))
= I(enc(k1, k))

= I(enc(ko, k))

A — enc(s, (ki, k2))
enc(ky, k)
enc(ko, k)

B «+ enc(x,k)

— X once

=
) = I(x) attacker
= I(y) | clauses

s can be proved to remain secret if C I/ I(s).

46 /55

Global state in ProVerif
Horn clauses C
A small protocol
= I(enc(s, (ki, k2))
= I(enc(k1, k))

= I(enc(ko, k))

A — enc(s, (ki, k2))
enc(ki, k)
enc(ka, k)

B <+ enc(x,k)

— X once
I(enc(x,y)), I(y) = I(y)
I({x,y)) = I(x) ; attacker
I({x,y)) = I(y) clauses

s can be proved to remain secret if C I/ I(s).

However, C F I(s) !

46 /55

The idea

in(c,enc(x, k))

Initial
process in(d,y)

{ Initial H - C}
query

The idea

in(c,enc(x, k))

Initial
process in(d,y)

{ Initial H = C}
query

new st
in(c,enc(x, k))
event(Unique(sty, x))

new sty

in(d,y)
event(Unique(sty, x))

The idea

in(c,enc(x, k)) new sty
in(c,enc(x, k))

Initial
event(Unique(sty, x))

process in(d,y)

new sty

Initial in(d,y)
{ query H= C} event(Unique(sts, x))

add axiom

[event(Unique(x,y)) A event(Unique(x,y')) = y = y’]

47 /55

Other limitations of ProVerif

1. Horn clauses yield over-aproximations
Example: Vv I(v) = Voted(id, v, r(v))

48 /55

Other limitations of ProVerif

1. Horn clauses yield over-aproximations
Example: Vv I(v) = Voted(id, v, r(v))
yields
Voted(id, v1, r(v1)), Voted(id, va, r(v2)), Voted(id, v3, r(v3))

48 /55

Other limitations of ProVerif

1. Horn clauses yield over-aproximations
Example: Vv I(v) = Voted(id, v, r(v))

yields
Voted(id, v1, r(v1)), Voted(id, va, r(v2)), Voted(id, v3, r(vs3))

Idea: restrictions

VOted(I'd7 Vi, rl),Voted(id, % r2) ==vi=wAND n=n

48 /55

Other limitations of ProVerif

1. Horn clauses yield over-aproximations
Example: Vv I(v) = Voted(id, v, r(v))
yields
Voted(id, v1, r(v1)), Voted(id, va, r(v2)), Voted(id, v3, r(vs3))

Idea: restrictions

VOted(I'd7 Vi, rl),Voted(id, % r2) ==vi=wAND n=n

2. Saturation by resolution may still not terminate
(despite ProVerif's strategy)

48 /55

Other limitations of ProVerif

1. Horn clauses yield over-aproximations
Example: Vv I(v) = Voted(id, v, r(v))
yields
Voted(id, v1, r(v1)), Voted(id, va, r(v2)), Voted(id, v3, r(vs3))

Idea: restrictions

VOted(I'd7 Vi, rl),Voted(id, % r2) ==vi=wAND n=n

2. Saturation by resolution may still not terminate
(despite ProVerif's strategy)

Idea: lemma as proof helpers

48 /55

Proverif 2.02: introduction of lemmas

[S&P'22, with B. Blanchet and V. Cheval]

Process Translation into Horn clauses Saturation of Horn clauses

Verification of the query

Proverif 2.02: introduction of lemmas

[S&P'22, with B. Blanchet and V. Cheval]

Saturation of Horn clauses

Process Translation into Horn clauses

Lemmas / Axioms / Restrictions Applied on each Horn clauses

Verification of the query
Lemma FAF— G
Clause H= C

If there is a substitution o s.t. Fio0, Foo C H then
H = Cis replaced by HA Go = C

Proverif 2.02: introduction of lemmas

[S&P'22, with B. Blanchet and V. Cheval]

Process Translation into Horn clauses Saturation of Horn clauses

Lemmas / Axioms / Restrictions Applied on each Horn clauses

Verification of the query

Lemma FAF— G
Clause H= C

not always sound!

[If there is a substitution o s.t. Fio, Fo0 C H then

H = C is replaced by H A Go = C events v
attacker facts X

Proverif 2.02: introduction of lemmas

[S&P'22, with B. Blanchet and V. Cheval]

Translation into Horn clauses Saturation of Horn clauses

Process

Applied on each Horn clauses

Verification of the lemma
Lemma F; AF, — G [by induction]
Clause H= C

not always sound!

[If there is a substitution o s.t. Fio, Fo0 C H then

H = C is replaced by H A Go = C events v
attacker facts X

Even better: lemma by induction

49 /55

Experimental results

50/55

Protocol Q | Old # queries |ProVerif 2.02
PCV Otway-Rees eq | X 1 v
PCV Needham-Schroeder |inj | X g 'é/
PCV Denning-Sacco inj | X 1 4

cor 2 4
JFK inj X 5 v
Arinc823 cor | X 6 4
Helios-norevote eq | X 4 v
Signal cor | X 2 4
TLS12-TLS13-draft18 cor | X 1 4

Back to Belenios

Who is dishonest?

() Serv Reg Serv+ Reg
Verifiability * * X

recorded as cast
tallied as recorded
eligibility verif.

X

(*) provided voters verify at the end of the election.

51/55

Back to Belenios
Who is dishonest?

() Serv Reg Serv+ Reg

Verifiability * * X
recorded as cast * * *
tallied as recorded
eligibility verif. X

(*) provided voters verify at the end of the election.

Who is dishonest?
< t trustees >t trustees
Vote privacy X

Setting: the election key is shared amongst n trustees,
t + 1 trustees are needed to decrypt.

51/55

Back to Belenios

Who is dishonest?

() Serv Reg Serv+ Reg
Verifiability * * X

recorded as cast
tallied as recorded
eligibility verif.

X

(*) provided voters verify at the end of the election.

< t trustees

Who is dishonest?
> t trustees

Vote privacy
in multi-elections

X
? X

Setting: the election key is shared amongst n trustees,
t + 1 trustees are needed to decrypt.

— What about privacy in multi-election?

51/55

A closer look at privacy

Multi-elections:
> elections with two rounds

> many elections at the same time (for different candidates)

> several elections circles (“voting stations”)

Convenient feature: use the same key for all elections
» much easier for trustees

> In Belenios, voting credentials are refreshed for each election,
avoiding confusion

52/55

A closer look at privacy (2)

Risk of key reuse: trustees used as decryption oracle

Main election Test election

copy
J{LVA{pkE {va}pke
VB pkE :

53/55

A closer look at privacy (2)

Risk of key reuse: trustees used as decryption oracle

vk(credy), vk(creds), . .. vk(credy), vk(credb), . ..
Main election Test election
{VA}pkE+5igncred1 >®.P({VA}pkE+5igncred1

{VB}pkE+Signcred1

Not possible in Belenios since the cred are renewed.

53/55

A closer look at privacy (2)

53/55

Risk of key reuse: trustees used as decryption oracle

vk(credy), vk(creds), . .. vk(credy), vk(credb), . ..
Main election Test election
{VA}pkE+5igncred1 >®.P({VA}pkE+5igncred1

{VB}pkE+Signcred1

Not possible in Belenios since the cred are renewed.

But, what if the Registrar is dishonest?

— There is a flaw, fixed by chance: the server is a mandatory
trustee, hence pkg must be refreshed for each election

— Require heavy monitoring in case both Registrar and Server are
dishonest.

Ongoing detailed security model in Proverif

Limitations of Belenios

> No real booth
— Internet voting IS remote voting

> Requires to trust the voter's computer
A compromised computer could

» leak the choice of the voter
» change the vote for another candidate
— Missing cast-as-intended

> Belenios is not “receipt free”
— A voter can prove how they voted.

54 /55

Some challenges
Better formal verification

> decision procedures for larger equational theory classes
> better tools

> formalise security properties, possibly identifying new ones

Better e-voting systems

> more security properties: no vote buying, everlasting privacy, ...

> less trust assumptions (corrupted computers, ...)

> better authentication

Better involvement of the general public

o
J HECTROMANE

> better legal regulation in many countries

> usability

55 /55

	Modelling messages
	Terms
	Equational theory

	Modelling protocols
	Process algebra
	Global state in ProVerif

