
Formal verification of electronic voting systems

Véronique Cortier, CNRS, Loria (Nancy, France)

June 8th, 2023

1/55

Why e-voting?

▶ Convenient
−→ for voters: vote from home, or abroad
−→ for authorities: easier to record and tally votes

▶ More “democracy”
−→ complex tally process (Condorcet, STV, IRV)
−→ can be used more often
−→ complex legal rules
(a voter may vote from any place in their state)

▶ Many protocols have been proposed:
Helios, Belenios, Civitas, Prêt-à-Voter, Selene, CHVote, sElect,
StarVote, . . .

2/55

Two main families for electronic voting

Voting machines

▶ Voters attend a polling station;
▶ Standard authentication (id cards, etc.)

Internet Voting

▶ Voters vote from home;
▶ Using their own computer

(or phone, tablet, ...)

3/55

Internet voting is used in various countries

▶ France: National parliament for the French expats (2012, 2022)
▶ Australia: New South Wales state (2021, more than 650 000

votes cast by Internet)
▶ Estonia: local elections (since 2005), national parliamentary

elections (2007, 2011, 2015, 2019)
▶ Switzerland: several trials, a demanding and evolving

regulation since 2013
▶ Canada: local election in Ontario (since 2003) and Nova Scotia

(since 2006)

4/55

...banned in other countries !

▶ Netherland: 2008, electronic voting is abolished (voting
machine and Internet)

▶ Germany: 2009, the voting machines (Nedap) are rejected, do
not comply with the constitution
It must be possible for a citizen to check the main steps of a

voting process, with no special expertise.

▶ Norway: trials ended in 2013
The fear of voters that their vote might become public may

undermine the democratic process.

5/55

Widely used in non-political election

▶ professional elections
▶ associations
▶ administration councils
▶ scientific councils

6/55

Numerous attacks !
Elections in Moscow [P. Gaudry]
▶ ballots posted on a blockchain (why?)
▶ bug bounty program

3 keys of 256 bits ̸= 1 key of 768 bits

Swiss context
▶ open specification, open source code
▶ call for public scrutiny
▶ multiple elections in one round

Privacy breach with A. Debant and P. Gaudry
▶ possibility to (silently) add an extra ballot box, with just Alice’

ballot
▶ a generous bug bounty

7/55

Numerous attacks !
Elections in Moscow [P. Gaudry]
▶ ballots posted on a blockchain (why?)
▶ bug bounty program

3 keys of 256 bits ̸= 1 key of 768 bits

Swiss context
▶ open specification, open source code
▶ call for public scrutiny
▶ multiple elections in one round

Privacy breach with A. Debant and P. Gaudry
▶ possibility to (silently) add an extra ballot box, with just Alice’

ballot
▶ a generous bug bounty

7/55

Numerous attacks !
Elections in Moscow [P. Gaudry]
▶ ballots posted on a blockchain (why?)
▶ bug bounty program

3 keys of 256 bits ̸= 1 key of 768 bits

Swiss context
▶ open specification, open source code
▶ call for public scrutiny
▶ multiple elections in one round

Privacy breach with A. Debant and P. Gaudry
▶ possibility to (silently) add an extra ballot box, with just Alice’

ballot
▶ a generous bug bounty

7/55

What is a good voting system?

8/55

Confidentiality of the votes

Vote privacy
"No one should know how I voted"

Better: Receipt-free / Coercion-resistant
"No one should know how I voted,
even if I am willing to tell my vote! "

▶ vote buying
▶ coercion

Everlasting privacy: no one should know my vote, even when the
cryptographic keys will be eventually broken.

9/55

Confidentiality of the votes

Vote privacy
"No one should know how I voted"

Better: Receipt-free / Coercion-resistant
"No one should know how I voted,
even if I am willing to tell my vote! "

▶ vote buying
▶ coercion

Everlasting privacy: no one should know my vote, even when the
cryptographic keys will be eventually broken.

9/55

Confidentiality of the votes

Vote privacy
"No one should know how I voted"

Better: Receipt-free / Coercion-resistant
"No one should know how I voted,
even if I am willing to tell my vote! "

▶ vote buying
▶ coercion

Everlasting privacy: no one should know my vote, even when the
cryptographic keys will be eventually broken.

9/55

Confidentiality of the votes

Vote privacy
"No one should know how I voted"

Better: Receipt-free / Coercion-resistant
"No one should know how I voted,
even if I am willing to tell my vote! "

▶ vote buying
▶ coercion

Everlasting privacy: no one should know my vote, even when the
cryptographic keys will be eventually broken.

9/55

Verifiability
Individual Verifiability: a voter can check that

▶ cast as intended: their ballot contains their intended vote
▶ recorded as cast: their ballot is in the ballot box.

Universal Verifiability: everyone can check that

▶ tallied as recorded: the result corresponds to the ballot box.
▶ eligibility: ballots have been casted by legitimate voters.

You should verify the election,
not the system.

Even better: accountability

▶ the system tells whom to blame
▶ eases dispute resolution

10/55

Verifiability
Individual Verifiability: a voter can check that

▶ cast as intended: their ballot contains their intended vote
▶ recorded as cast: their ballot is in the ballot box.

Universal Verifiability: everyone can check that

▶ tallied as recorded: the result corresponds to the ballot box.
▶ eligibility: ballots have been casted by legitimate voters.

You should verify the election,
not the system.

Even better: accountability

▶ the system tells whom to blame
▶ eases dispute resolution

10/55

And many more properties

▶ Availability: servers available at any time
▶ Accessibility: easy to use, adapted to people with various issues
▶ ...

11/55

I should not be able to prove how I voted, yet I should be able to
check that my vote has been counted...

Let’s see how this can be realized.

12/55

I should not be able to prove how I voted, yet I should be able to
check that my vote has been counted...

Let’s see how this can be realized.

12/55

Voting protocol Belenios
▶ variant of Helios, designed by

Ben Adida
▶ developed at Loria, teams Pesto

and Caramba (P. Gaudry)
Developer: Stéphane Glondu

▶ used in 2000+ elections, with a
total of 100 000+ voters

http://www.belenios.org/

▶ confidentiality of the votes
▶ verifiability of the voting process
→ The ballot box is public at any time.
→ All the operations (tally, ...) can be checked by anyone.

13/55

http://www.belenios.org/

Building blocks: cryptography

14/55

Threshold decryption

▶ Each trustee computes their secret key
▶ The n trustees jointly compute the public key pk
▶ Decryption with t out of the n keys:

t out of n trustees suffice to produce decryption shares, that
yield the plaintext

→ The decryption key is never present on a single computer,
neither during the key generation nor the decryption!

15/55

Threshold decryption

▶ Each trustee computes their secret key
▶ The n trustees jointly compute the public key pk
▶ Decryption with t out of the n keys:

t out of n trustees suffice to produce decryption shares, that
yield the plaintext

→ The decryption key is never present on a single computer,
neither during the key generation nor the decryption!

15/55

Zero-Knowledge proofs

Examples

▶ Possibility to prove that an encrypted message is either a or b
{m}k Proof (m = a or m = b)

▶ Possibility to prove that the decryption is correct
c, m Proof (deck(c) = m)

16/55

How Belenios works (simplified)
Phase 1: vote

pk(E)
Ballot Box

Alice {vA}pk(E) vA = 0 or 1
Bob {vB}pk(E) vB = 0 or 1
Chris {vC}pk(E) vC = 0 or 1

Phase 2: Tally - homomorphic encryption (El Gamal)

{v1}pk(E) × · · · × {vn}pk(E) = {v1 + · · ·+ vn}pk(E)

→ Only the final result needs to be decrypted!

pk(E): public key, the private keys are shared among the authorities.
17/55

How Belenios works (simplified)
Phase 1: vote

id , {v}r
pkE

pk(E)
Ballot Box

Alice {vA}pk(E) vA = 0 or 1
Bob {vB}pk(E) vB = 0 or 1
Chris {vC}pk(E) vC = 0 or 1

Phase 2: Tally - homomorphic encryption (El Gamal)

{v1}pk(E) × · · · × {vn}pk(E) = {v1 + · · ·+ vn}pk(E)

→ Only the final result needs to be decrypted!

pk(E): public key, the private keys are shared among the authorities.
17/55

How Belenios works (simplified)
Phase 1: vote

pk(E)
Ballot Box

Alice {vA}pk(E) vA = 0 or 1
Bob {vB}pk(E) vB = 0 or 1
Chris {vC}pk(E) vC = 0 or 1
David {vD}pk(E) vD = 0 or 1

Phase 2: Tally - homomorphic encryption (El Gamal)

{v1}pk(E) × · · · × {vn}pk(E) = {v1 + · · ·+ vn}pk(E)

→ Only the final result needs to be decrypted!

pk(E): public key, the private keys are shared among the authorities.
17/55

How Belenios works (simplified)
Phase 1: vote

pk(E)
Ballot Box

Alice {vA}pk(E) vA = 0 or 1
Bob {vB}pk(E) vB = 0 or 1
Chris {vC}pk(E) vC = 0 or 1
David {vD}pk(E) vD = 0 or 1
... ...

Phase 2: Tally - homomorphic encryption (El Gamal)

{v1}pk(E)×· · ·×{vn}pk(E) = {v1+· · ·+vn}pk(E) since ga×gb = ga+b

→ Only the final result needs to be decrypted! And proved.

pk(E): public key, the private keys are shared among the authorities.
17/55

Oversimplified!

id , {v}r
pkE

pk(E)
Ballot Box

Alice {vA}pk(E) vA = 0 or 1
Bob {vB}pk(E) vB = 0 or 1
Chris {vC}pk(E) vC = 0 or 1
David {vD}pk(E)
... ...

Result: {vA + vB + vC + vD + · · · }pk(E)

Use a zero-knowledge proof

{vD}pk(E), Proof{vD = 0 or vD = 1}

18/55

Oversimplified!

id , {v}r
pkE

pk(E)
Ballot Box

Alice {vA}pk(E) vA = 0 or 1
Bob {vB}pk(E) vB = 0 or 1
Chris {vC}pk(E) vC = 0 or 1
David {vD}pk(E) vD = 100
... ...

Result: {vA + vB + vC + 100 + · · · }pk(E)

A voter could cheat!

Use a zero-knowledge proof

{vD}pk(E), Proof{vD = 0 or vD = 1}

18/55

Oversimplified!

id , {v}r
pkE

pk(E)
Ballot Box

Alice {vA}pk(E) vA = 0 or 1
Bob {vB}pk(E) vB = 0 or 1
Chris {vC}pk(E) vC = 0 or 1
David {vD}pk(E) vD = 100
... ...

Result: {vA + vB + vC + vD + · · · }pk(E)

A voter could cheat!

Use a zero-knowledge proof

{vD}pk(E), Proof{vD = 0 or vD = 1}
18/55

Still oversimplified

id , {v}r
pkE

pk(E)
Ballot box

Alice {vA}pk(E)
Bob {vB}pk(E)
Chris {vC}pk(E)
... ...
...

1. During the setup phase, a Registrar generates private signing
keys, one for each voter

2. The voters sign their ballot with a “credential” they have
received (a credential = a right to vote)

19/55

Still oversimplified

id , {v}r
pkE

pk(E)
Ballot box

Alice {vA}pk(E)
Bob {vB}pk(E)
Chris {vC}pk(E)
... {1}pk(E)
... {1}pk(E)

The ballot box could add ballots!

1. During the setup phase, a Registrar generates private signing
keys, one for each voter

2. The voters sign their ballot with a “credential” they have
received (a credential = a right to vote)

19/55

Still oversimplified

id , {v}r
pkE

pk(E) vk(cred3), vk(cred1), vk(cred2), ...

Ballot box
Alice {vA}pk(E)
Bob {vB}pk(E)
Chris {vC}pk(E)
...
...

The ballot box could add ballots!

1. During the setup phase, a Registrar generates private signing
keys, one for each voter

2. The voters sign their ballot with a “credential” they have
received (a credential = a right to vote)

19/55

Still oversimplified

id , {v}r
pkE

pk(E) vk(cred3), vk(cred1), vk(cred2), ...

Ballot box
Alice [{vA}pk(E)]sk(cred1)
Bob [{vB}pk(E)]sk(cred2)
Chris [{vC}pk(E)]sk(cred3)
...
...

The ballot box could add ballots!

1. During the setup phase, a Registrar generates private signing
keys, one for each voter

2. The voters sign their ballot with a “credential” they have
received (a credential = a right to vote)

19/55

Some additional features

Many cryptographic features:
▶ blank votes: select 3 to 5 candidates among 10 OR vote blank
▶ threshold decryption: 5 out 7 trustees are sufficient to decrypt
▶ support both homomorphic encryption and mixnets

▶ rank candidates: Condorcet, STV
▶ score candidates: Majority Judgement

Multi-languages: English, French, German, Spanish, Czech,
Norwegian, Portuguese, Greek, Italian, ...

→ Just add yours! (easy, Weblate platform)

20/55

How Belenios is used?

since 2020:

▶ about 1500 elections / year on our voting platform
▶ 100 000+ ballots cast in total
▶ about 25 independant voting servers
▶ initial users

▶ universities for councils representatives, hiring commitees
▶ many sport associations (chess, handball) or other associations
▶ companies for representatives

▶ but also:
▶ FDP party (Germany)
▶ European Court of Accounts (ECA)
▶ Université Libre de Bruxelles (ULB)
▶ Italian Scouts Federation

21/55

Distribution of Belenios

There are two ways for running an election with Belenios.

1. Install your own server. Belenios is an open-source software,
available at:

https://gitlab.inria.fr/belenios/belenios

2. Use our online voting platform:
https://belenios.loria.fr/admin

▶ the administrator can set up an election and manage the
election authorities

▶ the decryption trustees can generate (locally) their private key
in their browser (also in the threshold mode)

▶ the registrar can generate (locally) all the credentials in their
browser. They then need to send the credentials to the voters
(typically by email).

22/55

https://gitlab.inria.fr/belenios/belenios
https://belenios.loria.fr/admin

Formal analysis of e-voting systems
Why a formal analysis of an e-voting system?

−→ Because formal methods can find attacks before
implementations
−→ Now a current practice for many protocols (TLS, 5G, ...)

→ Legal requirements in Switzerland to provide symbolic and
cryptographic proofs of e-voting protocols.

23/55

Formal analysis of e-voting systems
Why a formal analysis of an e-voting system?

−→ Because formal methods can find attacks before
implementations
−→ Now a current practice for many protocols (TLS, 5G, ...)

→ Legal requirements in Switzerland to provide symbolic and
cryptographic proofs of e-voting protocols.

23/55

Formal analysis of e-voting systems
Why a formal analysis of an e-voting system?

−→ Because formal methods can find attacks before
implementations
−→ Now a current practice for many protocols (TLS, 5G, ...)

→ Legal requirements in Switzerland to provide symbolic and
cryptographic proofs of e-voting protocols.

23/55

Two main models for security
Formal approach Computational approach

Messages

{}

⟨ , ⟩

A NA

k 0101000101110101
1101010110101010
0011101011101101

bitstrings
Encryption terms algorithm

Adversary idealized any polynomial algorithm

Guarantees some attacks missed stronger

Proof often automatic mostly by hand
difficult for complex protocols

24/55

Messages
Messages are abstracted by terms.

Agents : a, b, . . . Nonces : n1, n2, . . .
Keys : k1, k2, . . .
Ciphertext : aenc(pk, r , m) Concatenation : pair(m1, m2)

denoted simply (m1, m2) in ProVerif

Example: The encrypted message aenc(pk, r , pair(v1, v2)) is
represented by:

aenc

pk r pair

v1 v2

Intuition: only the structure of the message is kept.
25/55

Model for cryptographic primitives
Projection

π1(pair(x , y)) = x

π2(pair(x , y)) = y

Asymmetric and symmetric encryption

adec(aenc(pk(y), z , x), y) = x

dec(enc(x , y), y) = x

Zero knowledge proof: proof of valid vote

aenc(pk, r , m), ZKP(m = 0 OR m = 1)

Valid(ZKP(aenc(pk, r , 0), pk, r), aenc(pk, r , 0), pk) = ok
Valid(ZKP(aenc(pk, r , 1), pk, r), aenc(pk, r , 1), pk) = ok

26/55

Model for cryptographic primitives
Projection

π1(pair(x , y)) = x

π2(pair(x , y)) = y

Asymmetric and symmetric encryption

adec(aenc(pk(y), z , x), y) = x

dec(enc(x , y), y) = x

Zero knowledge proof: proof of valid vote

aenc(pk, r , m), ZKP(m = 0 OR m = 1)

Valid(ZKP(aenc(pk, r , 0), pk, r), aenc(pk, r , 0), pk) = ok
Valid(ZKP(aenc(pk, r , 1), pk, r), aenc(pk, r , 1), pk) = ok

26/55

Syntax for processes

The grammar of processes is as follows:

P, Q, R :=
0
if M1 = M2 then P else Q
let x = M in P
in(c, x); P
out(c, N); P
new n; P
P | Q
!P

Syntax of ProVerif, a dialect of the applied-pi calculus
[AbadiFournet01]

27/55

Example: Belenios light

A → S idA, aenc(pkE , rA, v0)
B → S idB, aenc(pkE , rB, v1)
S → {v0, v1}

ra random number generated by A.
rb random number generated by B.

We need to model two processes:

▶ one corresponding to the role of a voter
▶ one corresponding to the role of the server

28/55

Example: Belenios light

A → S idA, aenc(pkE , rA, v0)
B → S idB, aenc(pkE , rB, v1)
S → {v0, v1}

ra random number generated by A.
rb random number generated by B.

We need to model two processes:

▶ one corresponding to the role of a voter
▶ one corresponding to the role of the server

28/55

Role of a voter

id , {v}r
pkE

free c : channel.

let Voter(pkE, Vote, id , cauth) =

new r : bitstring;
let b = (id , aenc(pkE, r , Vote)) in
out(cauth, b);
out(c, b).

29/55

Role of a voter

id , {v}r
pkE

free c : channel.

let Voter(pkE, Vote, id , cauth) =
new r : bitstring;
let b = (id , aenc(pkE, r , Vote)) in

out(cauth, b);
out(c, b).

29/55

Role of a voter

id , {v}r
pkE

free c : channel.

let Voter(pkE, Vote, id , cauth) =
new r : bitstring;
let b = (id , aenc(pkE, r , Vote)) in
out(cauth, b);
out(c, b).

29/55

Security properties

Secrecy query
Not attacker(s)

Correspondence query F1, . . . , Fn ⇒ ϕ

Example:
Voted(id , v , r) ∧ EndTally⇒ Counted(v)

30/55

Security properties

Secrecy query
Not attacker(s)

Correspondence query F1, . . . , Fn ⇒ ϕ

Example:
Voted(id , v , r) ∧ EndTally⇒ Counted(v)

30/55

How to model vote privacy in symbolic models?

How to state formally:
"No one should know my vote (0 or 1)"?

Idea 1: An attacker should not learn the value of my vote.

S. Kremer & M. Ryan

31/55

How to model vote privacy in symbolic models?

How to state formally:
"No one should know my vote (0 or 1)"?

Idea 1: An attacker should not learn the value of my vote.

But everyone knows 0 and 1!

S. Kremer & M. Ryan

31/55

How to model vote privacy in symbolic models?

How to state formally:
"No one should know my vote (0 or 1)"?

Idea 1: An attacker should not learn the value of my vote.

Idea 2: An attacker cannot see the difference when voters are
different Voter(A, 0) ≈ Voter(B, 0)

S. Kremer & M. Ryan

31/55

How to model vote privacy in symbolic models?

How to state formally:
"No one should know my vote (0 or 1)"?

Idea 1: An attacker should not learn the value of my vote.

Idea 2: An attacker cannot see the difference when voters are
different Voter(A, 0) ≈ Voter(B, 0)

Who voted might be public

S. Kremer & M. Ryan

31/55

How to model vote privacy in symbolic models?

How to state formally:
"No one should know my vote (0 or 1)"?

Idea 1: An attacker should not learn the value of my vote.

Idea 2: An attacker cannot see the difference when voters are
different Voter(A, 0) ≈ Voter(B, 0)

Idea 3: An attacker cannot see the difference when I vote 0 or 1.

Voter(A, 0) ≈ Voter(A, 1)

S. Kremer & M. Ryan

31/55

How to model vote privacy in symbolic models?

How to state formally:
"No one should know my vote (0 or 1)"?

Idea 1: An attacker should not learn the value of my vote.

Idea 2: An attacker cannot see the difference when voters are
different Voter(A, 0) ≈ Voter(B, 0)

Idea 3: An attacker cannot see the difference when I vote 0 or 1.

Voter(A, 0) ≈ Voter(A, 1)

▶ The attacker always sees the difference since the tally differs.
▶ Unanimity does break privacy.

S. Kremer & M. Ryan

31/55

How to model vote privacy in symbolic models?

How to state formally:
"No one should know my vote (0 or 1)"?

Idea 1: An attacker should not learn the value of my vote.

Idea 2: An attacker cannot see the difference when voters are
different Voter(A, 0) ≈ Voter(B, 0)

Idea 3: An attacker cannot see the difference when I vote 0 or 1.

Voter(A, 0) ≈ Voter(A, 1)

Idea 4: An attacker cannot see when votes are swapped.

Voter(A, 0) | Voter(B, 1) ≈ Voter(A, 1) | Voter(B, 0)

S. Kremer & M. Ryan
31/55

ProVerif: automatic analysis of protocols

Developed by Bruno Blanchet and Vincent Cheval

Performs very well in practice!

▶ Works on most of existing protocols in the literature
▶ Is also used on industrial protocols (e.g. TLS, Signal, ...)
▶ used to pass Swiss requirements on voting

▶ Neuchâtel/Scytl protocol [C., Turuani 2018]
▶ CHVote protocol [C., Turuani 2019]

→ ProVerif translates processes in applied pi-calculus into Horn
clauses (first-order logic).

32/55

ProVerif: automatic analysis of protocols

Developed by Bruno Blanchet and Vincent Cheval

Performs very well in practice!

▶ Works on most of existing protocols in the literature
▶ Is also used on industrial protocols (e.g. TLS, Signal, ...)
▶ used to pass Swiss requirements on voting

▶ Neuchâtel/Scytl protocol [C., Turuani 2018]
▶ CHVote protocol [C., Turuani 2019]

→ ProVerif translates processes in applied pi-calculus into Horn
clauses (first-order logic).

32/55

Intruder
Horn clauses perfectly reflects the attacker symbolic manipulations
on terms.

∀x∀y I(x), I(y) ⇒ I(enc(x , y)) encryption
∀x∀y I(enc(x , y)), I(y) ⇒ I(x) decryption

∀x∀y I(x), I(y) ⇒ I(< x , y >) concatenation
∀x∀y I(< x , y >) ⇒ I(x) first projection
∀x∀y I(< x , y >) ⇒ I(y) second projection

33/55

Protocol as Horn clauses

let Voter(pkE, Vote, id , cauth) =
new r : bitstring;
let b = (id , aenc(pkE, r , Vote)) in
eventVoted(id , Vote, r)
out(cauth, b);
out(c, b).

id , {v}r
pkE

Each action of the protocol is translated into logical implications.

∀v I(v) ⇒ I(⟨id , aenc(pkE, r(v), v⟩)
∀v I(v) ⇒ Voted(id , v , r(v))

34/55

Security reduces to consistency

secure?

⇝

Not I(secret)

∀x∀y I(x), I(y) ⇒ I(< x , y >)
∀x∀y I(x), I(y) ⇒ I(enc(x , y))
∀x∀y I(enc(x , y)), I(y) ⇒ I(x)
∀x∀y I(< x , y >) ⇒ I(x)
∀x∀y I(< x , y >) ⇒ I(y)

∀v I(v) ⇒ I(⟨id , aenc(pkE, r(v), v⟩)
∀v I(v) ⇒ Voted(id , v , r(v))

Does not yield a
contradiction ?

(i.e. consistent
theory ?)

35/55

Security reduces to consistency

secure?

⇝

Not I(secret)
∀x∀y I(x), I(y) ⇒ I(< x , y >)
∀x∀y I(x), I(y) ⇒ I(enc(x , y))
∀x∀y I(enc(x , y)), I(y) ⇒ I(x)
∀x∀y I(< x , y >) ⇒ I(x)
∀x∀y I(< x , y >) ⇒ I(y)

∀v I(v) ⇒ I(⟨id , aenc(pkE, r(v), v⟩)
∀v I(v) ⇒ Voted(id , v , r(v))

Does not yield a
contradiction ?

(i.e. consistent
theory ?)

35/55

How to know if a set of formula is consistent ?

Hilbert’s program (1928)
“Entscheidung Problem”

David Hilbert

It is undecidable! (1936)
→ There is no algorithm that answers
this question.

Alan Turing

(at a time with no computers)
36/55

Security reduces to consistency: but undecidable!

secure?

⇝

Not I(secret)

∀x∀y I(x), I(y) ⇒ I(< x , y >)
∀x∀y I(x), I(y) ⇒ I(enc(x , y))
∀x∀y I(enc(x , y)), I(y) ⇒ I(x)
∀x∀y I(< x , y >) ⇒ I(x)
∀x∀y I(< x , y >) ⇒ I(y)

∀v I(v) ⇒ I(⟨id , aenc(pkE, r(v), v⟩)
∀v I(v) ⇒ Voted(id , v , r(v))

Does not yield a
contradiction ?

(i.e. consistent
theory ?)

All this for nothing?

37/55

Security reduces to consistency: but undecidable!

secure?

⇝

Not I(secret)
∀x∀y I(x), I(y) ⇒ I(< x , y >)
∀x∀y I(x), I(y) ⇒ I(enc(x , y))
∀x∀y I(enc(x , y)), I(y) ⇒ I(x)
∀x∀y I(< x , y >) ⇒ I(x)
∀x∀y I(< x , y >) ⇒ I(y)

∀v I(v) ⇒ I(⟨id , aenc(pkE, r(v), v⟩)
∀v I(v) ⇒ Voted(id , v , r(v))

Does not yield a
contradiction ?

(i.e. consistent
theory ?)

All this for nothing?

37/55

A standard technique: resolution
Idea: add logical consequences . . .

P(0)

¬I(s(s(s(0))))
I(s(0))

∀xI(x) ⇒ P(s(x))

∀xP(x) ⇒ I(s(x))

... until a contradiction is found.

I
38/55

A standard technique: resolution
Idea: add logical consequences . . .

P(0)

¬I(s(s(s(0))))
I(s(0))

P(s(s(0)))∀xP(x) ⇒ I(s(x))

∀xI(x) ⇒ P(s(x))

... until a contradiction is found.

39/55

A standard technique: resolution
Idea: add logical consequences . . .

I(s(0))

P(s(s(0))) I(s(s(s(0))))

⊥?

∀xP(x) ⇒ I(s(x))

∀xI(x) ⇒ P(s(x))

P(0)

¬I(s(s(s(0))))

... until a contradiction is found.

40/55

A standard technique: resolution
Idea: add logical consequences . . .

I(s(0))

P(s(s(0))) I(s(s(s(0))))

⊥?

∀xP(x) ⇒ I(s(x))

∀xI(x) ⇒ P(s(x))

P(0)

¬I(s(s(s(0))))

... until a contradiction is found.

Ideally, we need a method (a strategy) which is:

▶ correct: adds formula that are indeed consequences
▶ complete: finds a contradiction (if it exists)
▶ in a finite number of steps

41/55

A standard technique: resolution
Idea: add logical consequences . . .

I(s(0))

P(s(s(0))) I(s(s(s(0))))

⊥?

∀xP(x) ⇒ I(s(x))

∀xI(x) ⇒ P(s(x))

P(0)

¬I(s(s(s(0))))

... until a contradiction is found.

Ideally, we need a method (a strategy) which is:

▶ correct: adds formula that are indeed consequences
▶ complete: finds a contradiction (if it exists)
▶ in a finite number of steps undecidable fragment

41/55

ProVerif

▶ Implements a correct procedure (that may not terminate or just
stop without answer).

▶ Based on a resolution strategy well adapted to protocols.

Process Translation into Horn clauses Saturation of Horn clauses

Verification of the query

42/55

Binary resolution

H ⇒ C F , H ′ ⇒ C ′

Hσ, H ′σ ⇒ C ′σ
with σ substitution s.t. Cσ = Fσ

F ̸= I(x)

▶ correct
▶ but adds too many clauses (never terminates)

ProVerif’s strategy:

▶ do not resolve on I(x)
Theorem: it remains refutationally complete

▶ well crafted order of resolution

43/55

Binary resolution

H ⇒ C F , H ′ ⇒ C ′

Hσ, H ′σ ⇒ C ′σ
with σ substitution s.t. Cσ = Fσ

F ̸= I(x)

▶ correct
▶ but adds too many clauses (never terminates)

ProVerif’s strategy:

▶ do not resolve on I(x)
Theorem: it remains refutationally complete

▶ well crafted order of resolution

43/55

Example

C = {¬I(s), I(k1), I({s}⟨k1,k1⟩),
I({x}y), I(y)⇒ I(x), I(x), I(y)⇒ I(⟨x , y⟩)

¬I(s)

I({s}⟨k1,k1⟩) I({x}y), I(y) ⇒ I(x)

I(⟨k1, k1⟩) ⇒ s

I(k1)

I(k1) I(x), I(y) ⇒ I(⟨x , y⟩)

I(y) ⇒ I(⟨k1, y⟩)

I(⟨k1, k1⟩)

I(s)

⊥

44/55

But it is not terminating!

I(y)⇒ I(⟨s, y⟩)

I(y)⇒ I(⟨s, y⟩)

I(s)

I(s) I(x), I(y)⇒ I(⟨x , y⟩)

I(y)⇒ I(⟨s, y⟩)

I(⟨s, s⟩)

I(⟨s, ⟨s, s⟩⟩)

I(⟨s, ⟨s, ⟨s, s⟩⟩⟩)

· · ·

→ Hence ProVerif never resolves on I(x), I(y), ...

45/55

Global state in ProVerif
A small protocol

A → enc(s, ⟨k1, k2⟩)
enc(k1, k)
enc(k2, k)

B ← enc(x , k)
→ x once

Horn clauses C

⇒ I(enc(s, ⟨k1, k2))
⇒ I(enc(k1, k))
⇒ I(enc(k2, k))

I(enc(x , k)) ⇒ I(x)

I(enc(x , y)), I(y) ⇒ I(y)
I(⟨x , y⟩) ⇒ I(x)
I(⟨x , y⟩) ⇒ I(y)

 attacker
clauses

s can be proved to remain secret if C ̸⊢ I(s).

However, C ⊢ I(s) !

46/55

Global state in ProVerif
A small protocol

A → enc(s, ⟨k1, k2⟩)
enc(k1, k)
enc(k2, k)

B ← enc(x , k)
→ x once

Horn clauses C

⇒ I(enc(s, ⟨k1, k2))
⇒ I(enc(k1, k))
⇒ I(enc(k2, k))

I(enc(x , k)) ⇒ I(x)

I(enc(x , y)), I(y) ⇒ I(y)
I(⟨x , y⟩) ⇒ I(x)
I(⟨x , y⟩) ⇒ I(y)

 attacker
clauses

s can be proved to remain secret if C ̸⊢ I(s).

However, C ⊢ I(s) !

46/55

Global state in ProVerif
A small protocol

A → enc(s, ⟨k1, k2⟩)
enc(k1, k)
enc(k2, k)

B ← enc(x , k)
→ x once

Horn clauses C

⇒ I(enc(s, ⟨k1, k2))
⇒ I(enc(k1, k))
⇒ I(enc(k2, k))

I(enc(x , k)) ⇒ I(x)

I(enc(x , y)), I(y) ⇒ I(y)
I(⟨x , y⟩) ⇒ I(x)
I(⟨x , y⟩) ⇒ I(y)

 attacker
clauses

s can be proved to remain secret if C ̸⊢ I(s).

However, C ⊢ I(s) !
46/55

The idea

Initial
process

in(c, enc(x , k))
...
in(d , y)
...

Initial
query H ⇒ C

new st1
in(c, enc(x , k))
event(Unique(st1, x))
...
new st2
in(d , y)
event(Unique(st2, x))
...

add events
for each input

event(Unique(x , y)) ∧ event(Unique(x , y ′))⇒ y = y ′

add axiom

47/55

The idea

Initial
process

in(c, enc(x , k))
...
in(d , y)
...

Initial
query H ⇒ C

new st1
in(c, enc(x , k))
event(Unique(st1, x))
...
new st2
in(d , y)
event(Unique(st2, x))
...

add events
for each input

event(Unique(x , y)) ∧ event(Unique(x , y ′))⇒ y = y ′

add axiom

47/55

The idea

Initial
process

in(c, enc(x , k))
...
in(d , y)
...

Initial
query H ⇒ C

new st1
in(c, enc(x , k))
event(Unique(st1, x))
...
new st2
in(d , y)
event(Unique(st2, x))
...

add events
for each input

event(Unique(x , y)) ∧ event(Unique(x , y ′))⇒ y = y ′

add axiom

47/55

Other limitations of ProVerif

1. Horn clauses yield over-aproximations
Example: ∀v I(v)⇒ Voted(id , v , r(v))

yields
Voted(id , v1, r(v1)), Voted(id , v2, r(v2)), Voted(id , v3, r(v3))
. . .

Idea: restrictions

Voted(id , v1, r1), Voted(id , v2, r2)⇒ v1 = v2 AND r1 = r2

2. Saturation by resolution may still not terminate
(despite ProVerif’s strategy)

Idea: lemma as proof helpers

48/55

Other limitations of ProVerif

1. Horn clauses yield over-aproximations
Example: ∀v I(v)⇒ Voted(id , v , r(v))
yields
Voted(id , v1, r(v1)), Voted(id , v2, r(v2)), Voted(id , v3, r(v3))
. . .

Idea: restrictions

Voted(id , v1, r1), Voted(id , v2, r2)⇒ v1 = v2 AND r1 = r2

2. Saturation by resolution may still not terminate
(despite ProVerif’s strategy)

Idea: lemma as proof helpers

48/55

Other limitations of ProVerif

1. Horn clauses yield over-aproximations
Example: ∀v I(v)⇒ Voted(id , v , r(v))
yields
Voted(id , v1, r(v1)), Voted(id , v2, r(v2)), Voted(id , v3, r(v3))
. . .

Idea: restrictions

Voted(id , v1, r1), Voted(id , v2, r2)⇒ v1 = v2 AND r1 = r2

2. Saturation by resolution may still not terminate
(despite ProVerif’s strategy)

Idea: lemma as proof helpers

48/55

Other limitations of ProVerif

1. Horn clauses yield over-aproximations
Example: ∀v I(v)⇒ Voted(id , v , r(v))
yields
Voted(id , v1, r(v1)), Voted(id , v2, r(v2)), Voted(id , v3, r(v3))
. . .

Idea: restrictions

Voted(id , v1, r1), Voted(id , v2, r2)⇒ v1 = v2 AND r1 = r2

2. Saturation by resolution may still not terminate
(despite ProVerif’s strategy)

Idea: lemma as proof helpers

48/55

Other limitations of ProVerif

1. Horn clauses yield over-aproximations
Example: ∀v I(v)⇒ Voted(id , v , r(v))
yields
Voted(id , v1, r(v1)), Voted(id , v2, r(v2)), Voted(id , v3, r(v3))
. . .

Idea: restrictions

Voted(id , v1, r1), Voted(id , v2, r2)⇒ v1 = v2 AND r1 = r2

2. Saturation by resolution may still not terminate
(despite ProVerif’s strategy)

Idea: lemma as proof helpers

48/55

Proverif 2.02: introduction of lemmas
[S&P’22, with B. Blanchet and V. Cheval]

Process Translation into Horn clauses Saturation of Horn clauses

Verification of the query

Lemmas / Axioms / Restrictions Applied on each Horn clauses

Lemma F1 ∧ F2 → G
Clause H ⇒ C

If there is a substitution σ s.t. F1σ, F2σ ⊆ H then
H ⇒ C is replaced by H ∧ Gσ ⇒ C

not always sound!

events ✓
attacker facts ✗

Even better: lemma by induction

Verification of the lemma

Lemma

[by induction]

49/55

Proverif 2.02: introduction of lemmas
[S&P’22, with B. Blanchet and V. Cheval]

Process Translation into Horn clauses Saturation of Horn clauses

Verification of the query

Lemmas / Axioms / Restrictions Applied on each Horn clauses

Lemma F1 ∧ F2 → G
Clause H ⇒ C

If there is a substitution σ s.t. F1σ, F2σ ⊆ H then
H ⇒ C is replaced by H ∧ Gσ ⇒ C

not always sound!

events ✓
attacker facts ✗

Even better: lemma by induction

Verification of the lemma

Lemma

[by induction]

49/55

Proverif 2.02: introduction of lemmas
[S&P’22, with B. Blanchet and V. Cheval]

Process Translation into Horn clauses Saturation of Horn clauses

Verification of the query

Lemmas / Axioms / Restrictions Applied on each Horn clauses

Lemma F1 ∧ F2 → G
Clause H ⇒ C

If there is a substitution σ s.t. F1σ, F2σ ⊆ H then
H ⇒ C is replaced by H ∧ Gσ ⇒ C

not always sound!

events ✓
attacker facts ✗

Even better: lemma by induction

Verification of the lemma

Lemma

[by induction]

49/55

Proverif 2.02: introduction of lemmas
[S&P’22, with B. Blanchet and V. Cheval]

Process Translation into Horn clauses Saturation of Horn clauses

Verification of the query

Lemmas / Axioms / Restrictions Applied on each Horn clauses

Lemma F1 ∧ F2 → G
Clause H ⇒ C

If there is a substitution σ s.t. F1σ, F2σ ⊆ H then
H ⇒ C is replaced by H ∧ Gσ ⇒ C

not always sound!

events ✓
attacker facts ✗

Even better: lemma by induction

Verification of the lemma

Lemma

[by induction]

49/55

Experimental results

Protocol Q Old # queries ProVerif 2.02
PCV Otway-Rees eq ✗ 1 ✓

PCV Needham-Schroeder inj ✗
6 ✓

3
PCV Denning-Sacco inj ✗ 1
JFK cor

✗
2

inj 2 ✓

Arinc823 cor ✗ 6
Helios-norevote eq ✗ 4 ✓

Signal cor ✗ 2
TLS12-TLS13-draft18 cor ✗ 1

50/55

Back to Belenios
Who is dishonest?

∅ Serv Reg Serv+ Reg
Verifiability ✓ ✓∗ ✓∗ ✗

recorded as cast ✓ ✓∗ ✓∗ ✓∗

tallied as recorded ✓ ✓ ✓ ✓

eligibility verif. ✓ ✓ ✓ ✗

(*) provided voters verify at the end of the election.

Who is dishonest?
≤ t trustees > t trustees

Vote privacy ✓ ✗

in multi-elections

Setting: the election key is shared amongst n trustees,
t + 1 trustees are needed to decrypt.

→ What about privacy in multi-election?

51/55

Back to Belenios
Who is dishonest?

∅ Serv Reg Serv+ Reg
Verifiability ✓ ✓∗ ✓∗ ✗

recorded as cast ✓ ✓∗ ✓∗ ✓∗

tallied as recorded ✓ ✓ ✓ ✓

eligibility verif. ✓ ✓ ✓ ✗

(*) provided voters verify at the end of the election.

Who is dishonest?
≤ t trustees > t trustees

Vote privacy ✓ ✗

in multi-elections

Setting: the election key is shared amongst n trustees,
t + 1 trustees are needed to decrypt.

→ What about privacy in multi-election?

51/55

Back to Belenios
Who is dishonest?

∅ Serv Reg Serv+ Reg
Verifiability ✓ ✓∗ ✓∗ ✗

recorded as cast ✓ ✓∗ ✓∗ ✓∗

tallied as recorded ✓ ✓ ✓ ✓

eligibility verif. ✓ ✓ ✓ ✗

(*) provided voters verify at the end of the election.

Who is dishonest?
≤ t trustees > t trustees

Vote privacy ✓ ✗

in multi-elections ? ✗

Setting: the election key is shared amongst n trustees,
t + 1 trustees are needed to decrypt.

→ What about privacy in multi-election?
51/55

A closer look at privacy

Multi-elections:
▶ elections with two rounds
▶ many elections at the same time (for different candidates)
▶ several elections circles (“voting stations”)

Convenient feature: use the same key for all elections
▶ much easier for trustees
▶ In Belenios, voting credentials are refreshed for each election,

avoiding confusion

52/55

A closer look at privacy (2)
Risk of key reuse: trustees used as decryption oracle

Main election
{vA}pkE
{vB}pkE

...

Test election
{vA}pkE

...

copy

Not possible in Belenios since the cred are renewed.

But, what if the Registrar is dishonest?
→ There is a flaw, fixed by chance: the server is a mandatory
trustee, hence pkE must be refreshed for each election
→ Require heavy monitoring in case both Registrar and Server are
dishonest.

Ongoing detailed security model in Proverif

53/55

A closer look at privacy (2)
Risk of key reuse: trustees used as decryption oracle

vk(cred1), vk(cred2), . . .
Main election
{vA}pkE+signcred1

{vB}pkE+signcred1
...

vk(cred ′
1), vk(cred ′

2), . . .
Test election
{vA}pkE+signcred1

...

copy

Not possible in Belenios since the cred are renewed.

But, what if the Registrar is dishonest?
→ There is a flaw, fixed by chance: the server is a mandatory
trustee, hence pkE must be refreshed for each election
→ Require heavy monitoring in case both Registrar and Server are
dishonest.

Ongoing detailed security model in Proverif

53/55

A closer look at privacy (2)
Risk of key reuse: trustees used as decryption oracle

vk(cred1), vk(cred2), . . .
Main election
{vA}pkE+signcred1

{vB}pkE+signcred1
...

vk(cred ′
1), vk(cred ′

2), . . .
Test election
{vA}pkE+signcred1

...

copy

Not possible in Belenios since the cred are renewed.

But, what if the Registrar is dishonest?
→ There is a flaw, fixed by chance: the server is a mandatory
trustee, hence pkE must be refreshed for each election
→ Require heavy monitoring in case both Registrar and Server are
dishonest.

Ongoing detailed security model in Proverif
53/55

Limitations of Belenios

▶ No real booth
→ Internet voting IS remote voting

▶ Requires to trust the voter’s computer
A compromised computer could
▶ leak the choice of the voter
▶ change the vote for another candidate
→ Missing cast-as-intended

▶ Belenios is not “receipt free”
→ A voter can prove how they voted.

54/55

Some challenges
Better formal verification
▶ decision procedures for larger equational theory classes
▶ better tools
▶ formalise security properties, possibly identifying new ones

Better e-voting systems
▶ more security properties: no vote buying, everlasting privacy, ...
▶ less trust assumptions (corrupted computers, ...)
▶ better authentication

Better involvement of the general public

▶ usability
▶ better legal regulation in many countries

55/55

	Modelling messages
	Terms
	Equational theory

	Modelling protocols
	Process algebra
	Global state in ProVerif

