Secret Key Recovery from Partial Information in the Pre- and Post-Quantum World

Alex May

Ruhr-University Bochum CASA - casa.rub.de/en/

SUMMER SCHOOL ON REAL-WORLD CRYPTO AND PRIVACY@VODICE 2023

What's the task?

Setting: Public key world with key pairs (pk, sk), $c = \text{Enc}_{pk}(m)$ is an encrypted message.

A cryptanalyst's job

- Secret Key Recovery: Given *pk*, reconstruct *sk*.
- Message Recovery : Given pk and c, reconstruct m.

Running examples:

- **1** RSA: Given $(N = pq, e), c = m^e \mod N$, recover either $p, q, d = e^{-1} \mod \phi(N)$, or m.
- 2 ElGamal: Given $(g, g^a), c = (g^b, g^{ab}m)$, recover either *a* (dlog), or *m* (DH).
- McEliece: Let's wait a bit.
- **(4)** Kyber, Dilithium, Falcon (LWE), NTRU: Given $A \in \mathbb{Z}_q^{n \times n}$, $\mathbf{b} = A\mathbf{s} + \mathbf{e} \mod q$, recover \mathbf{s} .

Question: What if too hard?

"Factoring is hard. Let's go shopping!" (Nadia Heninger) "Dlog is hard. Let's go swimming!" (Pierrick Gaudry in Vodice, 2 days ago)

Let us do a little bit of cheating.

Side-Channel Attacks

Try to get some useful information about *sk* or *m* from side-channels.

Various side-channel sources:

- Power Consumption
- 2 Timing
- Faults
- Cold Boot
- Micro Architectural

New, easier task

Given *pk* and some information about *sk* or *m*, recover the latter (in polynomial time).

Maybe a more rewarding task.

Partial Key Exposure Attack, or better: Partial Key Completion

- Secret Key Recovery : Given *pk* + information on *sk*, reconstruct *sk*.
- **2** Message Recovery : Given pk and c + information on m, reconstruct m.

Information can be:

- some bits in consecutive positions
- some bits in random positions
- all bits with some error probability
- many other things

Leaky Intuition.

If *sk* (or *m*) has *n* bits, we leak *k* bits, then the problem should retain n - k bit hardness. Fascinating (at least for me): This intuition is often plain wrong!

Factoring with High Bits Known

Theorem (Coppersmith 1996)

Let N = pq be an RSA modulus, p can be recovered with 1/2 of its most significant bits.

- Model as $N = (\tilde{p} + x)y$.
- Remaining bits are root of $f(x, y) = N (\tilde{p} + x)y$.
- Coppersmith method: Finds all roots with $|xy| \le N^{\frac{3}{4}}$.

RSA Partial Key Exposure Results on Secret Exponent d

Small secret d: $ed = 1 \mod \phi(N)$

- Modelling as ed = 1 + k(N (p + q 1))
- Wiener (1990): $f(x, y) = ex y \mod N$, works for $d \le N^{0.25}$.
- Boneh-Durfee (1999): $f(x, y) = 1 + x(N y) \mod e$, works for $d \le N^{0.29}$.

RSA Partial Key Exposure: d not small, but known bits

- Ernst, Jochemsz, May, de Weger (2005): Known bits extension of Boneh-Durfee.
- Takayasu, Kunihiro (2014): Several nice improvements.

Suggestion (don't take too serious): Make wild conjectures.

Boneh-Durfee conjectured $d \le N^{0.5}$. Stimulated lots of research, although likely not true.

RSA Partial Key Exposure Results on Secret CRT Exponents

Small secret d_p , d_q : $ed_p = 1 \mod p - 1$ and $ed_q = 1 \mod q - 1$

- Jochemsz, May (2007): Attack for $d_p, d_q \leq N^{0.073}$.
- Takayasu, Lu, Peng (2017): Attack for $d_p, d_q \leq N^{0.122}$.

RSA Partial Key Exposure: d_{ρ} , d_{q} not small, but known bits

- May, Nowakowski, Sarkar (2021): Extension of Takayasu, Lu, Peng.
- May, Nowakowski, Sarkar (2022): 1/3 bits of d_p , d_q suffice for $e \approx N^{\frac{1}{12}}$.

Some surveys (only those written by myself):

- New RSA Vulnerabilities Using Lattice Reduction Methods (2003)
- Using LLL-Reduction for Solving RSA and Factorization Problems: A Survey (2007)
- Lattice-based Integer Factorization An Introduction to Coppersmith's Method (2021)

Personal remark

I do not want to do this anymore (I swear, really), but it haunts me!

Discrete Logarithms

Discrete Logarithm (dlog): public key (g, g^a) , let g be of order q (n bits)

- Pollard Rho (1975): $\mathcal{O}(\sqrt{q})$ steps
- Pollard Lambda (1975): small $a \leq 2^k \ll q$, works in $\mathcal{O}(\sqrt{2^k})$.

Partial Key Exposure:

• Pollard Lambda (1975): Given n - k upper bits of a, recover a in $\mathcal{O}(\sqrt{2^k})$.

$$rac{g^a}{g^{ ilde{a}}}=g^{a- ilde{a}}$$

• Esser, May (2020): Low weight dlog problem from bits in random positions of *a*.

Conclusion

Almost no results, nothing polynomial! Why the heck, actually?

Diffie-Hellman Problem

DH problem: Given g^a, g^b , compute g^{ab} .

- Boneh, Venkatesan (1996): Hidden Number Problem
- Provides algorithm that computes g^{ab} from an algorithm for MSBs of g^{ab} .

Partial Key Exposure

• Successfully applied for ECDSA with small bit leakage per signature, lots of research, see e.g. Albrecht, Heninger (2021) for a recent one.

Once again

Dlog still seems to be more resistant than RSA. Is Partial Key an RSA artefact?

What about the Post-Quantum World?

Common belief

Modern Post-Quantum systems are not really vulnerable to Partial Key Exposure.

Some results:

- Albrecht, Deo, Paterson
 "Cold boot attacks on Ring and Module LWE keys under the NTT" (2018)
- Dachman-Soled, Ducas, Gong, Rossi
 "LWE with Side Information: Attacks and Concrete Security Estimation" (2020)
- Esser, May, Verbel, Wen
 "Partial Key Exposure Attacks on BIKE, Rainbow and NTRU" (2022)

Kirshanova, May "Decoding McEliece with a Hint-Secret Goppa Key Parts Reveal Everything" (2022)

The (Classic) McEliece Cryptosystem (1978, 2022)

Security: Based on hardness of decoding binary linear codes.

Definition Linear Code

A binary linear code *C* is a *k*-dimensional subspace of \mathbb{F}_2^n .

• Via generator matrix $G \in \mathbb{F}_2^{k \times n}$:

$$\mathcal{C} = \{ \mathbf{x} G \mid \mathbf{x} \in \mathbb{F}_2^k \}.$$

• Via parity check matrix $H \in \mathbb{F}_2^{(n-k) \times n}$:

$$C = \{\mathbf{c} \in \mathbb{F}_2^n \mid H\mathbf{c} = \mathbf{0}\}.$$

Classic McEliece:

- *sk* is a structured parity check matrix *H* of a Goppa code.
- *pk* is (randomly scrambled) version of *H*.
- Smallest parameters: n = 3488, $n k = 768 = 64 \cdot 12 = tm$.

The McEliece Secret Key

Setting: We work with

- a "large" field $\mathbb{F}_{2^m} = \mathbb{F}_{2^{12}}$,
- a list of n = 3488 Goppa points $L = (\alpha_1, \ldots, \alpha_n) \in \mathbb{F}_{2^m}^n$,
- an irreducible deg-*t* (deg-64) Goppa polynomial $g(x) \in \mathbb{F}_{2^m}[x]$.

Definition Goppa code / McEliece secret key

We define a Goppa code as

$$\mathcal{C}(L,g) = \left\{ \mathbf{c} \in \mathbb{F}_2^n \ : \ \sum_{i=1}^n rac{\mathbf{c}_i}{x - lpha_i} \equiv 0 \mod g(x)
ight\}.$$

A McEliece secret key is sk = (L, g).

Construction of Public Key

McEliece keys:

• Parity check matrix $\overline{H}(L,g) \in \mathbb{F}_{2^m}^{t \times n}$ for C(L,g):

$$\overline{H}(L,g) = \begin{pmatrix} 1 & 1 & \dots & 1 \\ \alpha_1 & \alpha_2 & \dots & \alpha_n \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1^{t-1} & \alpha_2^{t-1} & \dots & \alpha_n^{t-1} \end{pmatrix} \cdot \begin{pmatrix} g^{-1}(\alpha_1) & 0 & \dots & 0 \\ 0 & g^{-1}(\alpha_2) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & g^{-1}(\alpha_n) \end{pmatrix}$$

- Mapping $\mathbb{F}_{2^m} \to \mathbb{F}_2^m$ yields parity check matrix in $\mathbb{F}_2^{tm \times n}$.
- Partial Gaussian elimination of this matrix gives *McEliece public key* $pk = H \in \mathbb{F}_2^{tm \times n}$.

First Partial Key Exposure

Theorem Folklore Result

On input $pk = H \in \mathbb{F}_2^{tm \times n}$ and $L = (\alpha_1, \dots, \alpha_n)$, one can recover g(x) in polynomial time.

Idea:

- Compute codeword $\mathbf{c} = (c_1, \dots, c_n) \in \mathbb{F}_2^n \setminus \mathbf{0}$ with $H\mathbf{c} = \mathbf{0}$.
- Since $\mathbf{c} \in C(L,g)$ we have

$$\sum_{i=1}^n \frac{c_i}{x - \alpha_i} \equiv 0 \mod g(x).$$

• Multiplication by $\prod_{j=1,...,n} (x - \alpha_j)$ yields

$$\sum_{i=1}^n c_i \prod_{1 \le j \le n, j \ne i} (x - \alpha_j) \equiv 0 \mod g(x).$$

• Factor left hand side, and look for degree-*t* irreducible g(x).

Using only tm + 1 Goppa Points.

Theorem Kirshanova, May (2022)

On input $pk = H \in \mathbb{F}_2^{tm \times n}$ and $(\alpha_i)_{i \in \mathcal{I}}$, $|\mathcal{I}| = tm + 1$, one recovers g(x) in polynomial time.

Idea:

- Let $H' \in \mathbb{F}_2^{tm \times (tm+1)}$ be the restriction on H on columns in \mathcal{I} .
- Compute $\bar{\mathbf{c}'} \neq \mathbf{0}$ with $H'\mathbf{c}' = \mathbf{0}$. Expand \mathbf{c}' with 0's outside \mathcal{I} to \mathbf{c} .
- We obtain codeword $\mathbf{c} = (c_1, \dots, c_n) \in \mathbb{F}_2^n$ with $H\mathbf{c} = \mathbf{0}$, $\operatorname{supp}(\mathbf{c}) \in \mathcal{I}$.
- Since $\mathbf{c} \in \mathcal{C}(L,g)$ we have

$$\sum_{i\in\mathcal{I}}rac{\mathcal{C}_i}{\mathbf{x}-lpha_i}\equiv 0 \mod g(\mathbf{x}).$$

• Multiplication by $\prod_{j \in \mathcal{I}} (x - \alpha_j)$ yields

$$\sum_{i\in\mathcal{I}}c_i\prod_{j\in\mathcal{I}\setminus\{i\}}(x-lpha_j)\equiv 0 mod g(x).$$

• Factor left hand side, and look for degree-*t* irreducible g(x).

Experimental Results.

Observation

Improvement comes from capability of computing codewords of weight at most tm + 1.

(<i>n</i> , <i>t</i> , <i>m</i>)	$\ell = tm + 1$	$ \mathcal{L} = 1$	$\ell = tm + 2$	$\left \mathcal{L} ight =1$	Av. time
(3488, 64, 12)	769	97%	770	100%	18 sec
(4608, 96, 13)	1249	99%	1250	100%	54 sec
(6960, 119, 13)	1548	99%	1549	100%	91 sec
(8192, 128, 13)	1665	99%	1666	100%	105 sec

Table: Recovery of Goppa polynomial g(x).

Question: What about the remaining Goppa points?

Alex May

Recovering the remaining points.

Theorem Kirshanova, May (2022)

On input $H \in \mathbb{F}_2^{tm \times n}$, $(\alpha_i)_{i \in \mathcal{I}}$, $|\mathcal{I}| = tm + 1$, and g(x), one recovers $(\alpha_1, \ldots, \alpha_n)$ in poly time.

Idea:

• Construct from pk = H a codeword **c** with $supp(\mathbf{c}) \subseteq \mathcal{I} \cup \{r\}$ such that $c_r = 1$.

Then

$$\sum_{i\in\mathcal{I}}\frac{c_i}{x-\alpha_i}\equiv-\frac{1}{x-\alpha_r} \mod g(x).$$

• Compute left-hand side, and then solve for α_r .

Recovering the remaining points.

(<i>n</i> , <i>t</i> , <i>m</i>)	$\ell = tm + 1$	time
(3488, 64, 12)	769	42 sec
(4608, 96, 13)	1249	130 sec
(6960, 119, 13)	1548	167 sec
(8192, 128, 13)	1665	183 sec

Table: Experimental results for point recovery.

Take Away (and compare with RSA)

- We recover the McEliece secret key with roughly 1/4 of its bits.
- Works for random (known) positions.
- For the smallest parameter n = 3488 in 1 min, for the largest n = 8192 in < 5 mins.

LWE with Hints

- Dachman-Soled, Ducas, Gong, Rossi, "LWE with Side Information: Attacks and Concrete Security Estimation", Crypto 2020
- May, Nowakowski, "Too Many Hints When LLL Breaks LWE", eprint 2023/777

Definition mod-q / perfect hints

LWE Public Key: $A \in_R \mathbb{F}_q^{n \times n}$, $\mathbf{b} \in \mathbb{F}_q^n$ such that $\mathbf{b} = A\mathbf{s} + \mathbf{e}$ for small, unknown $\mathbf{s}, \mathbf{e} \in \mathbb{F}_q^n$ mod-q hints: $\mathbf{a}_i \in_R \mathbb{F}_q^n$ and $h_i := \langle \mathbf{a}_i, \mathbf{s} \rangle \in \mathbb{F}_q$ perfect hints: $\mathbf{a}_i \in_R \mathbb{F}_q^n$ and $h_i := \langle \mathbf{a}_i, \mathbf{s} \rangle$ over \mathbb{Z} (without mod q)

Motivation:

- LWE decryption computes $h := \langle \mathbf{c}, \mathbf{s} \rangle \in \mathbb{F}_q$ for ciphertexts \mathbf{c} .
- LWE signing computes $h := \langle H(\mathbf{m}), \mathbf{s} \rangle \in \mathbb{F}_q$ for a hashed message $H(\mathbf{m})$.

Observe: *n* linearly independent mod-*q* hints are sufficient.

Mod-q Hints

By our lattice construction, each hint

- reduces lattice dimension by one,
- reduces the shortest vector's norm,
- leaves lattice determinant unchanged.

Similarity to dlog(?)

So mod-q hints are mostly dimension reduction? No polynomial regime? Not quite.

M

	Kyber	Falcon	NTRU-HRSS	Kyber	Dilithium
	512	512	701	768	1024
mod-q	449 (88%)	452 (88%)	622 (89%)	702 (91%)	876 (85%)
Time	20 mins	20 mins	45 mins	35 mins	10 hours

Table: Mod-q hints required for solving with LLL reduction.

Perfect Hints Recall: $\mathbf{a}_i \in_R \mathbb{F}_a^n$ and $h_i := \langle \mathbf{a}_i, \mathbf{s} \rangle$ over \mathbb{Z}

Intuition

Intuitively, perfect hints should be more powerful than mod-q hints.

By our lattice construction, each hint

- lets lattice dimension unchanged,
- lets shortest vector's norm unchanged,
- increases the lattice determinant by q.

	Kyber	Falcon	NTRU-HRSS	Kyber	Dilithium
	512	512	701	768	1024
perfect	234 (46%)	233 (46%)	332 (47%)	390 (51%)	463 (45%)
Time	3 hours	3 hours	11 hours	1 day	7 days

Table: Perfect hints required for solving with LLL reduction.

<u>_</u>

Using Stronger Lattice Reduction (BKZ)

Clocktime in hours

Hints

Alex May

Cryptographic Key Guessing

Definition Key Guessing Problem

Let $k = k_1 \dots k_n$ be a length-*n* key sampled coordinate-wise from a distribution χ : $k \leftarrow \chi^n$. What is the number of trials to guess *k*?

• Consider uniform distribution $\chi = U$ with support $\{-1, 0, 1\}$. Then for all i = 1, ..., n

$$\Pr[k_i = (-1)] = \Pr[k_i = 0] = \Pr[k_i = 1] = \frac{1}{3}$$

• $\chi = U$ has entropy

$$H(\chi) = \sum_{j \in \{-1,0,1\}} \Pr[k_i = j] \log_2\left(\frac{1}{\Pr[k_i = j]}\right) = 3 \cdot \frac{1}{3} \log_2(3) = \log_2(3) \approx 1.58.$$

• Optimal key guessing enumerates keys with at most 3^n trials, $3^n/2$ on average.

• Since $H(\chi^n) = H(\chi)n$, we express our upper bound in terms of entropy as

$$3^n = 2^{\log_2(3)n} = 2^{H(\chi)n} = 2^{H(\chi^n)}.$$

Question: Can we always guess within an entropy upper bound $2^{H(\chi)n}$?

Centered Binomial Distribution

Another example: centered binomial $\mathcal{B}(1)$

• Consider binomial distribution $\chi = \mathcal{B}(1)$ with support $\{-1, 0, 1\}$ and for all *i*

$$\Pr[k_i = (-1)] = \frac{1}{4}, \ \Pr[k_i = 0] = \frac{1}{2}, \ \Pr[k_i = 1] = \frac{1}{4}.$$

• Then
$$H(\chi) = 2 \cdot \frac{1}{4} \log(4) + \frac{1}{2} \log(2) = \frac{3}{2}$$
.

- So can we do within $2^{\frac{3}{2}n}$? Well, worst case still costs 3^n trials.
- Optimal algorithm: Guess keys in order of descending probability. Average case?

Lattice Standards:

- Kyber512 uses $\chi = \mathcal{B}(3)$ with support $\{-3, \ldots, 3\}$.
- Kyber768 uses $\chi = \mathcal{B}(2)$ with support $\{-2, \dots, 2\}$.
- Falcon512 uses discrete Gaussian $\chi = D$ with support $\{-20, \dots, 20\}$.
- Falcon1024 uses discrete Gaussian $\chi = D$ with support $\{-13, \dots, 13\}$.

Why do we actually think of entropy?

Intuition for entropy bound from Information Theory

- Any key $k \leftarrow \chi^n$ can be compressed lossless to $(H(\chi) + \epsilon)n$ bits, ϵ constant.
- Algorithm: Enumerate compressed keys instead of keys themselves.
- Leads to an algorithm with $2^{H(\chi)n} \cdot 2^{\epsilon n}$ trials.
- MATZOV(22) used $2^{H(\chi)n}$ for analyzing lattice-based schemes. Large underestimate?

Experimental Evidence

Figure: $\epsilon n = \log(\mathbb{E}[T]/2^{H(\chi)n})$

Similar results:

- Albrecht, Shen, "Quantum Augmented Dual Attack", 2022
- Ducas, Pulles, "Does the Dual-Sieve Attack on LWE even Work?", 2023

Alex May

Our Result

Complexity Measure

So far we sticked to success probability p = 1, and tried to bound the number of trials *t*. Why not optimize t/p?

Aborted Key Guessing: Abort when the probability for next key guess hits a threshold.

Theorem Glaser, May, Nowakowski, eprint 2023/797

For any distribution χ , Aborted Key Guessing

- uses at most $t \leq 2^{H(\chi)n}$ trials,
- 2 has success probability $p \rightarrow \frac{1}{2}$,
- 3 allows for (optimal) quantum-type Grover version with $t \leq 2^{H(\chi)n/2}$ trials.

Convergence Experimentally

Figure: Convergence of success probability $p \rightarrow \frac{1}{2}$

Lessons Learned

- Some schemes allow for efficient Partial Key Exposure: RSA, McEliece.
- McEliece attack works with less information, in random positions, and faster.
- Put positively, one can compress a McEliece secret key to 1/4 of its size.
- Some schemes seem more resistant to Partial Key Exposure: Dlog, lattices.
- Lattices still allow for Partial Key Exposures beyond pure dimension reduction.
- Key redundancy seems to play major role for Partial Key Exposure attacks.
- Key Guessing can be done within $2^{H(\chi)n}$ trials for any χ with probability $p \to \frac{1}{2}$.

Question:

Which information do we obtain from real side-channels?