
Secret Key Recovery from Partial Information
in the Pre- and Post-Quantum World

Alex May

Ruhr-University Bochum
CASA - casa.rub.de/en/

SUMMER SCHOOL ON REAL-WORLD CRYPTO AND PRIVACY@VODICE 2023

Alex May Thank you so much for inviting me. Enjoy your stay as much as I do. 1 / 29

What’s the task?
Setting: Public key world with key pairs (pk , sk), c = Encpk (m) is an encrypted message.

A cryptanalyst’s job
1 Secret Key Recovery: Given pk , reconstruct sk .
2 Message Recovery : Given pk and c, reconstruct m.

Running examples:
1 RSA: Given (N = pq,e), c = me mod N, recover either p,q, d = e−1 mod φ(N), or m.
2 ElGamal: Given (g,ga), c = (gb,gabm), recover either a (dlog), or m (DH).
3 McEliece: Let’s wait a bit.
4 Kyber, Dilithium, Falcon (LWE), NTRU: Given A ∈ Zn×n

q ,b = As + e mod q, recover s.

Question: What if too hard?
"Factoring is hard. Let’s go shopping!" (Nadia Heninger)
"Dlog is hard. Let’s go swimming!" (Pierrick Gaudry in Vodice, 2 days ago)

Alex May Good old school cryptanalysis. 2 / 29

Let us do a little bit of cheating.

Side-Channel Attacks
Try to get some useful information about sk or m from side-channels.

Various side-channel sources:
1 Power Consumption
2 Timing
3 Faults
4 Cold Boot
5 Micro Architectural

New, easier task
Given pk and some information about sk or m, recover the latter (in polynomial time).

Alex May You are considered especially cool, if you can make it poly time. 3 / 29

Maybe a more rewarding task.

Partial Key Exposure Attack, or better: Partial Key Completion
1 Secret Key Recovery : Given pk + information on sk , reconstruct sk .
2 Message Recovery : Given pk and c + information on m, reconstruct m.

Information can be:
some bits in consecutive positions
some bits in random positions
all bits with some error probability
many other things

Leaky Intuition.
If sk (or m) has n bits, we leak k bits, then the problem should retain n − k bit hardness.
Fascinating (at least for me): This intuition is often plain wrong!

Alex May It is so hard to get stupid names out of this world. 4 / 29

Factoring with High Bits Known

Theorem (Coppersmith 1996)
Let N = pq be an RSA modulus, p can be recovered with 1/2 of its most significant bits.

Model as N = (p̃ + x)y .
Remaining bits are root of f (x , y) = N − (p̃ + x)y .

Coppersmith method: Finds all roots with |xy | ≤ N
3
4 .

Alex May A smash hit from the 90s, what a historical talk. 5 / 29

RSA Partial Key Exposure Results on Secret Exponent d

Small secret d: ed = 1 mod φ(N)

Modelling as ed = 1 + k(N − (p + q − 1))
Wiener (1990): f (x , y) = ex − y mod N, works for d ≤ N0.25.
Boneh-Durfee (1999): f (x , y) = 1 + x(N − y) mod e, works for d ≤ N0.29.

RSA Partial Key Exposure: d not small, but known bits
Ernst, Jochemsz, May, de Weger (2005): Known bits extension of Boneh-Durfee.
Takayasu, Kunihiro (2014): Several nice improvements.

Suggestion (don’t take too serious): Make wild conjectures.

Boneh-Durfee conjectured d ≤ N0.5. Stimulated lots of research, although likely not true.

Alex May The really famous ones: Wiener and Boneh-Durfee 6 / 29

RSA Partial Key Exposure Results on Secret CRT Exponents
Small secret dp,dq: edp = 1 mod p − 1 and edq = 1 mod q − 1

Jochemsz, May (2007): Attack for dp,dq ≤ N0.073.
Takayasu, Lu, Peng (2017): Attack for dp,dq ≤ N0.122.

RSA Partial Key Exposure: dp,dq not small, but known bits
May, Nowakowski, Sarkar (2021): Extension of Takayasu, Lu, Peng.

May, Nowakowski, Sarkar (2022): 1/3 bits of dp,dq suffice for e ≈ N
1
12 .

Some surveys (only those written by myself):
1 New RSA Vulnerabilities Using Lattice Reduction Methods (2003)
2 Using LLL-Reduction for Solving RSA and Factorization Problems: A Survey (2007)
3 Lattice-based Integer Factorization - An Introduction to Coppersmith’s Method (2021)

Personal remark
I do not want to do this anymore (I swear, really), but it haunts me!

Alex May Still people are writing RSA Partial Key papers. Somebody has to stop them. 7 / 29

Discrete Logarithms
Discrete Logarithm (dlog): public key (g,ga), let g be of order q (n bits)

Pollard Rho (1975): O(√q) steps

Pollard Lambda (1975): small a ≤ 2k � q, works in O(
√

2k).

Partial Key Exposure:
Pollard Lambda (1975): Given n − k upper bits of a, recover a in O(

√
2k).

ga

gã
= ga−ã

Esser, May (2020): Low weight dlog problem from bits in random positions of a.

Conclusion
Almost no results, nothing polynomial! Why the heck, actually?

Alex May Oh no, we travelled back to the 70’s. Wrong direction, go back to the future! 8 / 29

Diffie-Hellman Problem

DH problem: Given ga,gb, compute gab.
Boneh, Venkatesan (1996): Hidden Number Problem
Provides algorithm that computes gab from an algorithm for MSBs of gab.

Partial Key Exposure
Successfully applied for ECDSA with small bit leakage per signature, lots of research,
see e.g. Albrecht, Heninger (2021) for a recent one.

Once again
Dlog still seems to be more resistant than RSA. Is Partial Key an RSA artefact?

Alex May Will we also see something new in this talk? 9 / 29

What about the Post-Quantum World?

Common belief
Modern Post-Quantum systems are not really vulnerable to Partial Key Exposure.

Some results:
1 Albrecht, Deo, Paterson

"Cold boot attacks on Ring and Module LWE keys under the NTT" (2018)
2 Dachman-Soled, Ducas, Gong, Rossi

"LWE with Side Information: Attacks and Concrete Security Estimation" (2020)
3 Esser, May, Verbel, Wen

"Partial Key Exposure Attacks on BIKE, Rainbow and NTRU" (2022)
4 Kirshanova, May

"Decoding McEliece with a Hint-Secret Goppa Key Parts Reveal Everything" (2022)

Alex May Argh, lattices everywhere in the crypto world. 10 / 29

The (Classic) McEliece Cryptosystem (1978, 2022)
Security: Based on hardness of decoding binary linear codes.

Definition Linear Code
A binary linear code C is a k -dimensional subspace of Fn

2.

Via generator matrix G ∈ Fk×n
2 :

C = {xG | x ∈ Fk
2}.

Via parity check matrix H ∈ F(n−k)×n
2 :

C = {c ∈ Fn
2 | Hc = 0}.

Classic McEliece:
sk is a structured parity check matrix H of a Goppa code.
pk is (randomly scrambled) version of H.
Smallest parameters: n = 3488, n − k = 768 = 64 · 12 = tm.
Alex May Back to a Linear Algebra course. 11 / 29

The McEliece Secret Key

Setting: We work with
a "large" field F2m = F212 ,
a list of n = 3488 Goppa points L = (α1, . . . , αn) ∈ Fn

2m ,
an irreducible deg-t (deg-64) Goppa polynomial g(x) ∈ F2m [x].

Definition Goppa code / McEliece secret key
We define a Goppa code as

C(L,g) =

{
c ∈ Fn

2 :
n∑

i=1

ci

x − αi
≡ 0 mod g(x)

}
.

A McEliece secret key is sk = (L,g).

Alex May Did anybody say that Goppa is hard to understand? 12 / 29

Construction of Public Key

McEliece keys:
Parity check matrix H(L,g) ∈ Ft×n

2m for C(L,g):

H(L,g) =

1 1 . . . 1
α1 α2 . . . αn
...

...
. . .

...
αt−1

1 αt−1
2 . . . αt−1

n

 ·

g−1(α1) 0 . . . 0
0 g−1(α2) . . . 0
...

...
. . .

...
0 0 . . . g−1(αn)

 .

Mapping F2m → Fm
2 yields parity check matrix in Ftm×n

2 .

Partial Gaussian elimination of this matrix gives McEliece public key pk = H ∈ Ftm×n
2 .

Alex May Look how structured it is. 13 / 29

First Partial Key Exposure
Theorem Folklore Result
On input pk = H ∈ Ftm×n

2 and L = (α1, . . . , αn), one can recover g(x) in polynomial time.

Idea:
Compute codeword c = (c1, . . . , cn) ∈ Fn

2 \ 0 with Hc = 0.
Since c ∈ C(L,g) we have

n∑
i=1

ci

x − αi
≡ 0 mod g(x).

Multiplication by
∏

j=1,...,n(x − αj) yields

n∑
i=1

ci
∏

1≤j≤n,j 6=i

(x − αj) ≡ 0 mod g(x).

Factor left hand side, and look for degree-t irreducible g(x).
Alex May Factoring polynomials is actually easy. 14 / 29

Using only tm + 1 Goppa Points.
Theorem Kirshanova, May (2022)

On input pk = H ∈ Ftm×n
2 and (αi)i∈I , |I| = tm + 1, one recovers g(x) in polynomial time.

Idea:
Let H ′ ∈ Ftm×(tm+1)

2 be the restriction on H on columns in I.
Compute c′ 6= 0 with H ′c′ = 0. Expand c′ with 0’s outside I to c.
We obtain codeword c = (c1, . . . , cn) ∈ Fn

2 with Hc = 0, supp(c) ∈ I.
Since c ∈ C(L,g) we have ∑

i∈I

ci

x − αi
≡ 0 mod g(x).

Multiplication by
∏

j∈I(x − αj) yields∑
i∈I

ci
∏

j∈I\{i}

(x − αj) ≡ 0 mod g(x).

Factor left hand side, and look for degree-t irreducible g(x).
Idea: Observe that

Assume we know Goppa points αi for some index set I ⊂ {1, . . . ,n}, |I| ≥ tm + 1.
ADVANCED-GOPPA constructs c with supp(c) ⊆ I from pk.
Easy: pk projected to the columns in I has non-trivial kernel, from which we take c.
Given c we compute the lhs of (??), and factor into irreducible polynomials over
F2m [x].
Every irreducible deg-t factor is stored in some list L.

Alex May Not much a difference compared to the previous slide, right? 15 / 29

Experimental Results.

Observation
Improvement comes from capability of computing codewords of weight at most tm + 1.

(n, t ,m) ` = tm + 1 |L| = 1 ` = tm + 2 |L| = 1 Av. time

(3488,64,12) 769 97% 770 100% 18 sec

(4608,96,13) 1249 99% 1250 100% 54 sec

(6960,119,13) 1548 99% 1549 100% 91 sec

(8192,128,13) 1665 99% 1666 100% 105 sec

Table: Recovery of Goppa polynomial g(x).

Question: What about the remaining Goppa points?
Alex May Look how fast it is. 16 / 29

Recovering the remaining points.

Theorem Kirshanova, May (2022)

On input H ∈ Ftm×n
2 , (αi)i∈I , |I| = tm+1, and g(x), one recovers (α1, . . . , αn) in poly time.

Idea:
Construct from pk = H a codeword c with supp(c) ⊆ I ∪ {r} such that cr = 1.
Then ∑

i∈I

ci

x − αi
≡ − 1

x − αr
mod g(x).

Compute left-hand side, and then solve for αr .

Alex May Even easier. 17 / 29

Recovering the remaining points.

(n, t ,m) ` = tm + 1 time

(3488,64,12) 769 42 sec

(4608,96,13) 1249 130 sec

(6960,119,13) 1548 167 sec

(8192,128,13) 1665 183 sec

Table: Experimental results for point recovery.

Take Away (and compare with RSA)
We recover the McEliece secret key with roughly 1/4 of its bits.
Works for random (known) positions.
For the smallest parameter n = 3488 in 1 min, for the largest n = 8192 in < 5 mins.

Alex May Recovering a few thousand points in seconds, wow. 18 / 29

LWE with Hints
Dachman-Soled, Ducas, Gong, Rossi, "LWE with Side Information: Attacks and
Concrete Security Estimation", Crypto 2020
May, Nowakowski, "Too Many Hints — When LLL Breaks LWE", eprint 2023/777

Definition mod-q / perfect hints
LWE Public Key: A ∈R Fn×n

q , b ∈ Fn
q such that b = As + e for small, unknown s,e ∈ Fn

q

mod-q hints: ai ∈R Fn
q and hi := 〈ai ,s〉 ∈ Fq

perfect hints: ai ∈R Fn
q and hi := 〈ai ,s〉 over Z (without modq)

Motivation:
LWE decryption computes h := 〈c,s〉 ∈ Fq for ciphertexts c.
LWE signing computes h := 〈H(m),s〉 ∈ Fq for a hashed message H(m).

Observe: n linearly independent mod-q hints are sufficient.
Alex May Let’s do lattices without all this naughty theory. 19 / 29

Mod-q Hints
By our lattice construction, each hint

reduces lattice dimension by one,

reduces the shortest vector’s norm,

leaves lattice determinant unchanged.

Similarity to dlog(?)
So mod-q hints are mostly dimension reduction? No polynomial regime? Not quite.

Kyber Falcon NTRU-HRSS Kyber Dilithium
512 512 701 768 1024

mod-q 449 (88%) 452 (88%) 622 (89%) 702 (91%) 876 (85%)
Time 20 mins 20 mins 45 mins 35 mins 10 hours

Table: Mod-q hints required for solving with LLL reduction.

Alex May Come on, you need 90%. Do you really want to call this a result? 20 / 29

Perfect Hints
Recall: ai ∈R Fn

q and hi := 〈ai ,s〉 over Z

Intuition
Intuitively, perfect hints should be more powerful than mod-q hints.

By our lattice construction, each hint

lets lattice dimension unchanged,

lets shortest vector’s norm unchanged,

increases the lattice determinant by q.

Kyber Falcon NTRU-HRSS Kyber Dilithium
512 512 701 768 1024

perfect 234 (46%) 233 (46%) 332 (47%) 390 (51%) 463 (45%)
Time 3 hours 3 hours 11 hours 1 day 7 days

Table: Perfect hints required for solving with LLL reduction.

Question:
What if we do not care about poly time attacks?

Alex May Ah, there you go. 21 / 29

Using Stronger Lattice Reduction (BKZ)

190 200 210 220 230 240 250

0

2

4

6

8

10

12

Clocktime in hours

Average

190 200 210 220 230 240 250

0

5

10

15

20

25

Hints

BKZ blocksize

Single experiments
Average

Figure: [Kyber-512, perfect hints]
Clocktime and BKZ blocksize.

Alex May This slide is supposed to be an eyesight test. 22 / 29

Cryptographic Key Guessing
Definition Key Guessing Problem
Let k = k1 . . . kn be a length-n key sampled coordinate-wise from a distribution χ: k ← χn.
What is the number of trials to guess k?

Consider uniform distribution χ = U with support {−1,0,1}. Then for all i = 1, . . . ,n

Pr[ki = (−1)] = Pr[ki = 0] = Pr[ki = 1] =
1
3
.

χ = U has entropy

H(χ) =
∑

j∈{−1,0,1}

Pr[ki = j] log2

(
1

Pr[ki = j]

)
= 3 · 1

3
log2(3) = log2(3) ≈ 1.58.

Optimal key guessing enumerates keys with at most 3n trials, 3n/2 on average.
Since H(χn) = H(χ)n, we express our upper bound in terms of entropy as

3n = 2log2(3)n = 2H(χ)n = 2H(χn).

Question: Can we always guess within an entropy upper bound 2H(χ)n ?
Alex May After decades of crypto research, do we really fail on this one? 23 / 29

Centered Binomial Distribution
Another example: centered binomial B(1)

Consider binomial distribution χ = B(1) with support {−1,0,1} and for all i

Pr[ki = (−1)] =
1
4
, Pr[ki = 0] =

1
2
, Pr[ki = 1] =

1
4
.

Then H(χ) = 2 · 1
4 log(4) + 1

2 log(2) = 3
2 .

So can we do within 2
3
2 n? Well, worst case still costs 3n trials.

Optimal algorithm: Guess keys in order of descending probability. Average case?

Lattice Standards:
Kyber512 uses χ = B(3) with support {−3, . . . ,3}.
Kyber768 uses χ = B(2) with support {−2, . . . ,2}.
Falcon512 uses discrete Gaussian χ = D with support {−20, . . . ,20}.
Falcon1024 uses discrete Gaussian χ = D with support {−13, . . . ,13}.
Alex May Look, entropy is decreasing. Physics must be wrong! 24 / 29

Why do we actually think of entropy?

Intuition for entropy bound from Information Theory
Any key k ← χn can be compressed lossless to (H(χ) + ε)n bits, ε constant.
Algorithm: Enumerate compressed keys instead of keys themselves.
Leads to an algorithm with 2H(χ)n · 2εn trials.
MATZOV(22) used 2H(χ)n for analyzing lattice-based schemes. Large underestimate?

Alex May Nobody likes small ε’s. Poor ε. 25 / 29

Experimental Evidence

slop
e ≈

0.1
298

slo
pe
≈ 0.1

82
4

0 20 40 60 80 100 120 140
0

5

10

15

20

25

n

lo
g

E[
T
K
G
]

E[
T
A
K
G
]

B(2) B(3)

Figure: εn = log(E[T]/2H(χ)n)

Similar results:
Albrecht, Shen, "Quantum Augmented Dual Attack", 2022
Ducas, Pulles, "Does the Dual-Sieve Attack on LWE even Work?", 2023
Alex May Nobody likes small ε’s. Poor ε. 26 / 29

Our Result

Complexity Measure
So far we sticked to success probability p = 1, and tried to bound the number of trials t .
Why not optimize t/p?

Aborted Key Guessing: Abort when the probability for next key guess hits a threshold.

Theorem Glaser, May, Nowakowski, eprint 2023/797
For any distribution χ, Aborted Key Guessing

1 uses at most t ≤ 2H(χ)n trials,
2 has success probability p → 1

2 ,
3 allows for (optimal) quantum-type Grover version with t ≤ 2H(χ)n/2 trials.

Alex May If things take too long, simply give up and go swimming (also true for talks). 27 / 29

Convergence Experimentally

5 10 15 20 25 30 35 40 45 50
0.45

0.5

0.55

0.6

n

ε

B(2) B(3)
D(4.05) D(2.87)

Figure: Convergence of success probability p → 1
2

Alex May If things take too long, simply give up and go swimming (also true for talks). 28 / 29

Lessons Learned

Some schemes allow for efficient Partial Key Exposure: RSA, McEliece.
McEliece attack works with less information, in random positions, and faster.
Put positively, one can compress a McEliece secret key to 1/4 of its size.

Some schemes seem more resistant to Partial Key Exposure: Dlog, lattices.
Lattices still allow for Partial Key Exposures beyond pure dimension reduction.
Key redundancy seems to play major role for Partial Key Exposure attacks.

Key Guessing can be done within 2H(χ)n trials for any χ with probability p → 1
2 .

Question:
Which information do we obtain from real side-channels?

Alex May Thank you so much for your attention. Happy to take questions. 29 / 29

