
Six Attacks on Matrix
https://nebuchadnezzar-megolm.github.io/

Martin Albrecht
joint work with Sofía Celi, Benjamin Dowling and Dan Jones

1

https://nebuchadnezzar-megolm.github.io/

Outline

New phone, who dis?

Cryptography in Matrix

Attacks

Discussion

Getting started on knocking stuff over

2

Matrix?

3

Matrix!

• Matrix = standard for federated, decentralised,
real-time group messaging

• Element = glossy flagship client
• End-to-end encryption is enabled by default

• Adversarial model: servers are the adversary
• Contrasts with Slack, MS Teams, Zulip, Mattermost, …

4

Matrix!

Element has over 80 million users. Matrix’ users include

5

Architecture

• In Matrix, each User account can
have many Devices.

• Each User has an account on a
particular Homeserver.

• Homeservers maintain the link
between a User account and its
Devices.

• Messages are distributed by the
Homeservers.

• A Room is a collection of Devices
that communicate in a single
conversation.

6

Outline

New phone, who dis?

Cryptography in Matrix

Attacks

Discussion

Getting started on knocking stuff over

7

Core Functionalities

kAB, kAC, kAD

kAB, kBC, kBD kAC, kBC, kCD

kAD, kBD, kCD

c1 c2

c3

kA

kA kA

kA

c1 c1

c1

Device/Entity Auth
(Cross-Signing Framework)

Session Establishment
(pairwise Olm channels)

Session Communication
(group Megolm channels)

8

Entity Authentication via Cross-Signing Framework

Each User sets up an account with a particular Homeserver, which allocates a
User identifier, A.

The User generates their User Secrets, used to establish ≊ web-of-trust.

• The master key (mpkA) serves as their long-term identity.
• The user-signing key (upkA) signs other User’s master keys.
• The self-signing key (spkA) signs a User’s own Device keys.

Alice Bob
mpkA

spkA upkA

(dpkA,1, ipkA,1)
· · ·

(dpkA,n, ipkA,n)

mpkB

spkBupkB

(dpkB,1, ipkB,1)
· · ·
(dpkB,m, ipkB,m)

ms
k A

msk
A

dsk
A dskA

msk
Bms

k B

dsk
B dskB

uskAuskB

9

Device Authentication via Cross-Signing Framework

When a new Device logs in with account
credentials, Homeserver allocates a
device identifier DA,i.
The Device then generates keys for this
Device and registers it with the
Homeserver:

1. Long-term Device Keys,
authenticates Olm Key
Bundle.

2. Olm Key Bundle, used to
establish the pairwise
channel, Olm.

10

Session Establishment via Olm

• Bob gets Alice’s public key from
Homeserver

• Bob does triple Diffie-Hellman (3DH) to
produce a symmetric master secret.

• Bob uses Double Ratchet protocol to
derive message keys.

• Bob encrypts Megolm Session State
under these keys, and sends Session
State to Alice.

Alice Bob

Identity Keys

One-Time Keys

Ratchet Key

idpkA idkB

otpkA otkB

pms0

pms1

pms2

pms0∥pms1∥pms2

KDF

ms
rck0B

KDF pms4

rk0 ck00

KDF

ck10 mk10

11

Megolm Session

Megolm Session State allows the Sender to
encrypt messages to the Megolm channel
(resp. a Receiver to decrypt).

(gsk,gpk)← SIG.Gen

R $←R
Sgpk ← (0,R,gpk)

Sgpk

A Megolm session consists of the current message index, the internal ratchet
state, and the group signing key.

outbound session Sgsk = (j,R,gsk) is kept in the device and used to encrypt
messages for the room.

inbound session Sgpk = (j,R,gpk) allows other devices in the room to
authenticate and decrypt these messages.

12

Megolm Ratchet

At its core, Megolm is a symmetric
ratcheting scheme:

• it derives a new key for each
message

• so that compromise of the current
state cannot be used to recover
previous encryption state

Ri−1

KDF

Ri K ki

KDF

Ri+1 K ki+1

13

Advancing the Megolm Ratchet I

The interesting part of Megolm: How does the Ratchet advance?

Ri,0 Ri,1 Ri,2 Ri,3 a

KDFKDF

KDF (when 28|i)

KDF

KDF (when 216|i)

KDF

KDF

KDF (when 224|i)

KDF

Makes catching up after a lot of messages quicker. Since you’re constantly
copying the ratchet state and advancing, do not need to do i HMAC calls to derive
current ratchet state.

14

Advancing the Megolm Ratchet I

The interesting part of Megolm: How does the Ratchet advance?

Ri,0 Ri,1 Ri,2 Ri,3 aKDF

KDF

KDF (when 28|i)

KDF

KDF (when 216|i)

KDF

KDF

KDF (when 224|i)

KDF

Makes catching up after a lot of messages quicker. Since you’re constantly
copying the ratchet state and advancing, do not need to do i HMAC calls to derive
current ratchet state.

14

Advancing the Megolm Ratchet I

The interesting part of Megolm: How does the Ratchet advance?

Ri,0 Ri,1 Ri,2 Ri,3 aKDFKDF

KDF (when 28|i)

KDF

KDF (when 216|i)

KDF

KDF

KDF (when 224|i)

KDF

Makes catching up after a lot of messages quicker. Since you’re constantly
copying the ratchet state and advancing, do not need to do i HMAC calls to derive
current ratchet state.

14

Advancing the Megolm Ratchet I

The interesting part of Megolm: How does the Ratchet advance?

Ri,0 Ri,1 Ri,2 Ri,3 aKDFKDF

KDF (when 28|i)

KDF

KDF (when 216|i)

KDF

KDF

KDF (when 224|i)

KDF

Makes catching up after a lot of messages quicker. Since you’re constantly
copying the ratchet state and advancing, do not need to do i HMAC calls to derive
current ratchet state.

14

Advancing the Megolm Ratchet I

The interesting part of Megolm: How does the Ratchet advance?

Ri,0 Ri,1 Ri,2 Ri,3 aKDFKDF

KDF (when 28|i)

KDF

KDF (when 216|i)

KDF

KDF

KDF (when 224|i)

KDF

Makes catching up after a lot of messages quicker. Since you’re constantly
copying the ratchet state and advancing, do not need to do i HMAC calls to derive
current ratchet state.

14

Advancing the Megolm Ratchet I

We need to advance the Megolm Ratchet between encryptions. How?

Ri,0 =

{
H0

(
R224(n−1),0

)
if ∃n|i = 224n

Ri−1,0 otherwise

Ri,1 =


H1

(
R224(n−1),0

)
if ∃n|i = 224n

H1

(
R216(m−1),1

)
if ∃m|i = 216m

Ri−1,1 otherwise

Ri,2 =


H2

(
R224(n−1),0

)
if ∃n|i = 224n

H2

(
R216(m−1),1

)
if ∃m|i = 216m

H2

(
R28(p−1),2

)
if ∃p|i = 28p

Ri−1,2 otherwise

Ri,3 =


H3

(
R224(n−1),0

)
if ∃n|i = 224n

H3

(
R216(m−1),1

)
if ∃m|i = 216m

H3

(
R28(p−1),2

)
if ∃p|i = 28p

H3

(
Ri−1,3

)
otherwise

Hi(x) = HMAC(key = x, input = 0x0i)
15

Megolm Encryption

1. Sender generates a fresh symmetric key from R,
2. encrypts the message under this key, and
3. signs it to provide authentication.

Enc(k,m) = c c

c

c

c

This ciphertext is distributed by the Homeserver to other devices in the Group.

16

Megolm Decryption

To decrypt a message, Devices verify
the signature with their copy of gpkA,i,G,
and straightforwardly reverse the
process.

Receiver Devices keep the oldest copy
of the ratchet state, only advancing
their ratchet in a temporary copy. This
allows Devices from the same User to
share message histories with one
another, by sharing old ratchet states.

Megolm.Dec(πmg, c)
(ver, i,R,gpk, σmg)← πmg

(ver′, i′, c′, τ, σ)← c
if !DS.Verify(gpk, σ, (ver, i′, c′, τ)) then

return (πmg,⊥)

(i,R)← MegolmRatchet.Advancei
′−i(i,R)

ke ∥ kh ∥ kiv ← HKDF(0,R′, lbl, 80)
if τ ̸= HMAC(kh, (ver, i, c′)[0 : 8] then

return (πmg,⊥)
m← AES-CBC .Dec(ke, kiv, c′)
return (πmg,m)

17

Adding Room Members

• Alice told by her Homeserver that Bob’s Device has been added.
• Alice’s Device now sends her current ratchet state mgpk = (j,R,gpk) to Bob’s
Device using the Olm channel between them

• Bob’s Device can now read messages sent by Alice’s Device after this point.

Homeserver

Add Bob mgpk

C
C

18

Removing Room Members

• Alice told by her homeserver that Bob’s Device has been removed.
• Alice generates a brand new Megolm ratchet state mgpk′

• Alice uses her Olm session with all other devices in the conversation to send
mgpk′

• Bob’s Device can no longer read messages sent by Alice’s Device after this
point.

Homeserver

Remove Bob

mgpk′ $←
mgpk′X

mgpk′C

C

19

“Pursue your dreams but have a backup plan”

Backup Functionalities:
backup and recover User and Megolm secret values via Homeservers.

C

C

D1 D2

1. KeyRequest D2 2. mgpk

3. C
4. C

(rpk, σ)

(rpk, σ)

(epk, c)

User Secret Backups
(Secure Secret Storage
and Sharing (SSSS))

Online Session Recovery
(KeyRequest protocol)

Offline Session Recovery
(Server-Side Megolm
Backups)

• backup master
(cross-signing)
secret keys to
server

• allows a user’s devices to
share Megolm session
information with each other

• as a hybrid of both,
backup Megolm
sessions to server

20

Outline

New phone, who dis?

Cryptography in Matrix

Attacks

Discussion

Getting started on knocking stuff over

21

Q: “Who to encrypt to?”

Group membership is managed through events:
Alice A Homeserver H Bob B

m.room.member(invite,A,B,G)
m.room.member(invite,A,B,G) m.room.member(invite,A,B,G)

m.room.member(join,B,A,G)
m.room.member(join,B,A,G) m.room.member(join,B,A,G)

22

A: “Don’t worry, the server will let you know.”

Group membership is managed through unauthenticated events:
Alice A Homeserver H Bob B

m.room.member(invite,A,B,G) m.room.member(invite,A,B,G)

m.room.member(join,B,A,G) m.room.member(join,B,A,G)

23

Discussion

Matrix knows group administration:
• Matrix knows of roles and
permissions in rooms, including
admin roles that control room
membership

• But there is no cryptographic
assurance: encryption, integrity
protection, authentication

Element offers some “mitigations”:
• When a user is added to room this
is visible as a genuine membership
event

• Adding an unverified user to a room,
adds a warning to the room that
unverified devices are present.

• But just because you verified Alice,
does not mean Alice should have
access to all your conversations.

24

Q: “What are Alice’s devices?” A: “Don’t worry …”

• To send a message to a user, clients need a list of their devices.
• This list is provided by the homeserver and, hence, can be forged.

25

Discussion

Matrix has a device verification
framework:

• the list of devices in a room is
maintained independently of that

• the homeserver may also present
different device lists to different
users/devices, e.g. not show the
additional malicious device to the
user it is purportedly associated
with

Element does offer a “mitigation”:
• adding an unverified device to a
room will lead to a warning that
such a device is present

26

Damage

Breaks confidentiality: Attackers can eavesdrop on conversations with some

indication in (Element’s) user interface.

27

Status

Neither of these two are fixed, but a remediation (signed group membership
messages) is in the planning stage.

• Matrix’ previous rational: Element client shows list of users for a room, so
users can inspect, i.e. burden on users.

• Matrix post-disclosure: “many in the cryptography community consider this a
serious misdesign. Eitherway, it’s avoidable behaviour and we’re ramping up
work now to address it by signing room memberships so the clients control
membership rather than the server.”

28

Attack on Out-of-Band Verification

How to ensure connection is not being MITM-ed? Out-of-band verification!
Short Authentication String (SAS) protocol ≈

1. Key exchange to generate a shared secret.
2. Compare the shared secret out-of-band

(using short strings of emojis).
If they don’t match, abort!

3. Send correct cryptographic identities to each other over a secure channel
(constructed using the shared secret).

The homeserver tricks devices into sharing a homeserver-controlled identity.

29

Attack on Out-of-Band Verification

• Two types of verification:
1. Between two users
2. Between two devices of the same

user
• Each party sends the other a
message containing a “key
identifier” field:

1. For two users, this field contains
the fingerprint of their master
cross-signing key, mpk.

2. For two devices, this field contains
their device identifier.

Attack:
• Homeserver assigns the target a
device identifier that is also a
master cross-signing key fingerprint
that the homeserver generated.

• When the target sends a verification
request message with their device
identifier, the receiving device
interprets it as a cross-signing key
fingerprint and signs it!

30

The Spec

Out-of-band verification is used
for:
1. two users’ devices verify

each other; and,
2. a user verifies a new device.

“Verification methods can be used to verify a
user’s master key by using the master public key,
encoded using unpadded base64, as the device
ID, and treating it as a normal device. For
example, if Alice and Bob verify each other using
SAS, Alice’s m.key.verification.mac message to
Bob may include
“ed25519:alices+master+public+key”:
“alices+master+public+key” in the mac property.
Servers therefore must ensure that device IDs
will not collide with cross-signing public keys.”

31

Message Format

{"mac": {"ed25519:<mpk'>": SAS.CalcMAC(k, dpk, c || "ed25519:<mpk'>"),
"ed25519:<mpk>": SAS.CalcMAC(k, mpk, c || "ed25519:<mpk>"),},

"keys": SAS.CalcMAC(k, sort("ed25519:<mpk'>", "ed25519:<mpk>"), c || "KEY_IDS")}

An m.key.verification.mac message generated by a user with cross-signing
master verification key mpk, long-term device key dpk and device identifier mpk’
(which is also the master verification key of a homeserver controlled
cross-signing identity). Whilst the two entries in the mac dictionary could be
distinguished by the differing second argument given to SAS.CalcMAC,
SAS.VerifyMAC interprets the first entry as a device, and then passes it to
SAS.SignDevice which interprets it as a cross-signing identity.

32

Attack i

Alice A and Bob B, each with device DA,1 and DB,1 respectively. Additionally, they
are both registered to a malicious homeserver, whose aim is to compromise their
out-of-band verification with the SAS protocol. The attack proceeds as follows:

1. When Alice A registers their account with the homeserver, the homeserver
generates a parallel cross-signing identity with verification keys
(mpk′A, spk′A,upk′A).

2. When Alice A logs in for the first time, the homeserver sets the device
identifier DA,1 ← mpk′A.

3. When Bob B logs in for the first time, the homeserver sets DB,1 as normal.

33

Attack ii

4. Alice and Bob each setup their own cross-signing identities with verification
keys (mpkA, spkA,upkA) and (mpkB, spkB,upkB) respectively. They upload
these to the homeserver.

34

Attack iii

5. The homeserver proceeds to present two versions of the cross-signing state:
5.1 When Alice requests their own cross-signing information, they are presented

with the version they uploaded (mpkA, spkA,upkA).
5.2 When Bob requests Alice’s cross-signing information, they are presented with

the version generated by the malicious homeserver (mpk′A, spk′A,upk′A).

35

Attack iv

6. Alice and Bob perform an out-of-band verification using the SAS protocol. At
the end, they exchange m.key.verification.mac messages containing their
cryptographic identity (for signing). DB,1 processes it as follows:
6.1 SAS.VerifyMAC interprets the entry for mpk′A as a request for device verification.

It fetches the expected device identity key dpkA,1, then calculates a matching
MAC. The device identity key pulled from the homeserver is legitimate, and
matches the one used by Alice’s device to generate the MAC. Thus, the message
passes verification.

6.2 SAS.SignDevice interprets the entry for mpk′A as a request for cross-signing
verification. This is because the homeserver has led Bob’s client to believe that
Alice’s cross-signing identity is mpk′A.

36

Attack v

7. Bob cross-signs the homeserver controlled identity for Alice, and uploads
the signature to the homeserver to distribute to their other devices.

37

Damage

Breaks confidentiality: Attackers can eavesdrop on conversations
and authentication: Attackers can impersonate users

with no indication in (Element’s) user interface!

38

Take Home Message

39

Alice: …, Bob: “Here are the keys for Charley”, Alice: “Ta!”

When a user adds a new device, they’d like that device to be able to decrypt
messages previously sent to that user via the KeyRequest protocol.

Element and other clients limited who they sent secrets to
but not who they accepted secrets from.

Attack:
DA,1 Homeserver H DH

(S′
gsk,S

′
gpk, σmg)

← Megolm.Init(1λ)Olm.Enc(m.forwarded_room_key(DB,1,gpk′,S′
gpk))

Accept S′
gpk

as DB,1’s session

40

Damage

Semi-trusted
Impersonation Attack

Breaks authentication:
Attackers can
impersonate users

with some indication in
(Element’s) user
interface.

41

Layering Attacks for Full Impersonation

Megolm session setup:

Megolm.Init

(Sgsk,Sgpk, σmg)

c0 = Olm.Enc(kAB, (Sgpk, σmg))

c1 = Olm.Enc(kAC, (Sgpk, σmg))

What if we could send (Sgpk, σmg) over Megolm instead of Olm?

Could we send it over a Megolm session placed via previous impersonation
attack?

42

Layering Attacks for Full Impersonation

Device DH impersonates DB,1 to DA,1:
DA,1 Homeserver H DH

(S′
gsk,S

′
gpk, σ

′
mg)

← Megolm.Init(1λ)Olm.Enc(m.forwarded_room_key(DB,1,gpk′,S′
gpk))

Accept S′
gpk

as DB,1’s sessionSe
m
i-T

ru
st
ed

Im
pe

rs
on

at
io
n

(S∗
gsk,S

∗
gpk, σ

∗
mg)

← Megolm.Init(1λ)Megolm.Encrypt(S′
gsk, m.room_key(S∗

gpk, σ
∗
mg))

Accept S∗
gpk

as DB,1’s session
(not forwarded)

43

Damage

Semi-trusted
Impersonation Attack

Breaks authentication:
Attackers can
impersonate users

with some indication in
(Element’s) user
interface.

Fully-trusted
Impersonation Attack

Breaks authentication:
Attackers can
impersonate users

with no indication in
(Element’s) user
interface.

44

More Layers: Authentication to Confidentiality Break

When a user verifies their new device, it will use SSSS to request User Secrets
from the user’s existing devices.

This includes the recovery key used for Megolm Backups, i.e.
DA,1 Homeserver H DA,2

Out-of-band Verification

m.secret.requests(m.megolm_backup.v1)

1. DA,1 verified
as Alice’s device?Olm.Enc(m.secret.send(m.megolm_backup.v1, rk))

1. DA,2 verified
as Alice’s device?
2. Did I request

this secret?
Accept rk. 45

Damage

Semi-trusted
Impersonation Attack

Breaks authentication:
Attackers can
impersonate users

with some indication in
(Element’s) user
interface.

Fully-trusted
Impersonation Attack

Breaks authentication:
Attackers can
impersonate users

with no indication in
(Element’s) user
interface.

Authentication to
Confidentiality Break

Breaks confidentiality:
Attackers can eavesdrop
on conversations

with no indication in
(Element’s) user
interface.

Together: complete break of confidentiality and authentication!

46

Take Home Messages

• There is no confidentiality without authentication.
• Put all cryptographic code in one small core.1

1Element checked authentication at display time, rather than at receipt time and thus those
checks were not run for messages that are not displayed.

47

IND-CCA Vulnerability

• Matrix uses an encrypt-then-MAC encryption scheme composing AES-CTR
with HMAC-SHA-256.

• Recall that AES-CTR proceeds by encrypting a series of blocks
iv, iv⊕ 1, iv⊕ 2, . . . and XORing the result onto the message blocks mi to
produce the ciphertext blocks ci.

• The full ciphertext is iv∥c0∥c1∥ However, the iv is not covered by the
authentication tag produced by HMAC-SHA-256.

48

IND-CCA Attack

Let c∗ be some challenge ciphertext for either some message m0 or m1 of length
128 bits:

c∗ := iv∥AES(k0, iv)⊕mb∥HMAC(k1,AES(k0, iv)⊕mb).

The adversary requests an encryption of zero from the encryption oracle and
receives

c := iv′∥AES(k0, iv′)⊕ 0∥HMAC
(
k1,AES(k0, iv′)⊕ 0

)
for some iv′. Finally, the adversary requests a decryption of

c+ := iv∥AES(k0, iv′)⊕ 0∥HMAC
(
k1,AES(k0, iv′)⊕ 0

)
from the decryption oracle. Note that the MAC verifies correctly, and so the
adversary will receive ‘t := AES(k0, iv′)⊕ AES(k0, iv)⊕ 0. Given that the adversary
already knows AES(k0, iv′) it can now recover AES(k0, iv) = t⊕ AES(k0, iv′) and
thus decrypt the challenge c∗.

49

IND-CCA Attack Limitations

• Forwarding keys to the target and
observing the resulting backups on
the homeserver provides an
encryption oracle.

• Modifying a backup on the
homeserver then requesting the
resulting key provides a decryption
oracle.

• In Matrix, k0, k1 are bound to a
particular gpk and all secret R’s
associated with a gpk can be
obtained by the key request
protocol.

• Any modified ciphertexts will likely
be invalid JSON structures and fail
to parse correctly (preventing the
decryption oracle from sharing the
plaintext with the adversary).

50

Attachments

• A similar issue exists for attachments which are shared out of band in
encrypted form.

• Here the hash shared over Megolm (which takes the role of the MAC) does
not include the iv.

• Since the iv itself is also shared over Megolm and thus implicitly
authenticated, we do not see a way to exploit this behaviour.

51

Take home message:

There is no confidentiality without integrity.2

2Corollary: The CIA triad – confidentiality, integrity, availability – is nonsense.

52

Recap & Status

1. Trivial confidentiality breaks not yet fixed
2. Attack on out-of-band verification CVE-2022-39250; reportedly mitigated
3. Impersonation CVE-2022-39246, CVE-2022-39249 and CVE-2022-39257;3

reportedly mitigated
4. Full impersonation CVE-2022-39248, CVE-2022-39251 and CVE-2022-39255;

reportedly mitigated
5. Impersonation to confidentiality break same CVEs as above; reportedly

mitigated
6. Theoretical confidentiality attack not yet fixed

3In their review of the ecosystem the Matrix developers discovered further clients vulnerable to
variants of our attack and assigned CVE-2022-39252, CVE-2022-39254 and CVE-2022-39264.

53

https://nvd.nist.gov/vuln/detail/CVE-2022-39250
https://nvd.nist.gov/vuln/detail/CVE-2022-39246
https://nvd.nist.gov/vuln/detail/CVE-2022-39249
https://nvd.nist.gov/vuln/detail/CVE-2022-39257
https://nvd.nist.gov/vuln/detail/CVE-2022-39248
https://nvd.nist.gov/vuln/detail/CVE-2022-39251
https://nvd.nist.gov/vuln/detail/CVE-2022-39255
https://nvd.nist.gov/vuln/detail/CVE-2022-39252
https://nvd.nist.gov/vuln/detail/CVE-2022-39254
https://nvd.nist.gov/vuln/detail/CVE-2022-39264

Outline

New phone, who dis?

Cryptography in Matrix

Attacks

Discussion

Getting started on knocking stuff over

54

Difficult Problems!

Matrix aims to solve some difficult problems:

1. Secure (Group) Messaging
…in a multi-device setting,
…that is scalable to thousands of devices in a single group.

2. Backups and history sharing.
3. Authentication and identity verification

…cross-signing to reduce user burden of out-of-band verification.
4. Federation.
5. Supporting a variety of clients across many platforms.

55

Cryptography is not a dark art

“Crypto is hard!”

56

Cryptography is not a dark art

“Crypto is hard!”
Of course, cryptography is hard, so is any
other science.

56

Cryptography is not a dark art

“Crypto is hard!”

Modern cryptography gives us the tools
to reason about cryptographic protocols
to rule out the sort of issues we found
here.

56

Cryptography is not a dark art

“Crypto is hard!”

“Cryptography needs security models
and proofs!”

56

Cryptography is not a dark art

57

Outline

New phone, who dis?

Cryptography in Matrix

Attacks

Discussion

Getting started on knocking stuff over

58

Two approaches

Start from the attack
• Start from a vulnerability (e.g. IV
reuse)

• Think about where the relevant
primitive is used

• Search for protocols until you find
one that is broken

Start from a protocol/scheme
• Start from a protocol you care about
• Read spec/source code
• Identify cryptographic core, focus
on that

• Need to have a good idea what is
out there in terms of attacks

59

Cryptographic proof attempts are cryptanalysis

• Our project started with the intention to prove Matrix secure (see Ben’s talk)
• We obviously could not make the proof work.
• Eventually the attacks became so many that we decided to write an “attack
paper” first

Try to prove more protocols out there secure! If you fail, you get an attack paper,
if you succeed you get a proof paper!

60

Disclosure lessons

• Decide who you have a responsibility to.
• This does not have to include the developers, the security state or even the
main users.

• Typically you will attack a protocol/scheme/product developed by people
with no rigorous security or cryptography training.

• They may plead, threaten, bribe.
• You can educate them, but you do not owe them this.

• Usually things sour when you move towards public disclosure
Developer incentive minimise perception of impact
Your incentive maximise perception of impact

• Security Twitter will be on your side with silly takes, don’t join in, don’t
ridicule, but educate

61

Fin

Thank you! Questions?
https://nebuchadnezzar-megolm.github.io/

61

https://nebuchadnezzar-megolm.github.io/

	New phone, who dis?
	Cryptography in Matrix
	Attacks
	Discussion
	Getting started on knocking stuff over

