
Smaller and faster public-key crypto for IoT
from genus-2 curves

Benjamin Smith
Real-world crypto+privacy summer school, Sibenik, 18/6/2019

Inria + Laboratoire d’Informatique de l’École polytechnique (LIX)

1



Ancient history

1860s: Kummer studies quartic surfaces in P3 with 16 point
singularities (the maximum possible number).

At first, these surfaces were very useful in optics; then they
became important examples in algebraic geometry.

Decades later, a connection was made with abelian varieties
and Jacobians of genus-2 curves.

120 years later, Kummer varieties appeared in cryptography.

2



Kummer surfaces

3



Elliptic curves

Elliptic curves: E : y2 = x3 + ax+ b. The points form a group.

Scalar multiplication P 7→ [m]P = P+ · · ·+ P︸ ︷︷ ︸
m times

.

Negation automorphism −1 : (x, y) 7→ (x,−y).

Take the quotient by ±1, identifying P and −P:

P 7−→ {P,−P} = {(xP, yP), (xP,−yP)} ↔ xP .

The image of this map is E/⟨±1⟩ ∼= P1, the x-axis.

Removing 1 bit of “sign” information takes us from E to P1, a
much simpler geometrical object.

On the other hand, it makes using the group law tricky.

4



What remains of the group law

±P and ±Q only determine the pair {±(P+ Q),±(P− Q)}.

•P

•P
•

• Q

• Q
•

•

• P+ Q

••P− Q
••

...and any 3 of x(P), x(Q), x(P− Q), x(P+ Q) determines the 4th. 5



x-only arithmetic

Since any 3 of x(P), x(Q), x(P− Q), x(P+ Q) determines the 4th,
we can define

Pseudo-addition, or xADD:

xADD : (x(P), x(Q), x(P− Q)) 7−→ x(P+ Q)

Pseudo-doubling, or xDBL:

xDBL : x(P) 7−→ x([2]P)

To compute the scalar multiple x([m]P) from m and x(P):
combine xADDs and xDBLs using the Montgomery ladder.

6



Genus-2 Jacobians

Genus-2 curves: C : y2 = x5 + f4x4 + f3x3 + f2x2 + f1x+ f0.

The Jacobian JC is a group built from C. An algebraic surface:
almost all elements of JC look like pairs of points on C.

Negation acts on both y-coordinates in a pair:

−1 : P = {(x1, y1), (x2, y2)} 7−→ −P = {(x1,−y1), (x2,−y2)} .

Quotient by ±1 involves symmetric functions x1 + x2, x1x2, y1y2.

The map P 7→ (1 : x1 + x2 : x1x2) would take us from JC to P2...
But y1y2 complicates things.

The quotient object JC/⟨±1⟩ is not P2, but a Kummer surface.

7



Kummer surfaces

The 16 singularities are the images of the 2-torsion points of
JC (which are obviously fixed by ±1). 8



Kummer surfaces again

Kummer surface KC := JC/±.

Classical defining equation:

4E · X1X2X3X4 =
(

X21 + X22 + X23 + X24 − F · (X1X4 + X2X3)
− G · (X1X3 + X2X4)− H · (X1X2 + X3X4)

)2
Operations (green = constant):

• xADD(±P,±Q,±(P− Q))
= M(S(H(M(M(H(±P),H(±Q)), c))), I(±(P− Q)))

• xDBL(±P) = M(S(H(M(S(H(±P)), c))), c′)

whereM, S , I are 4-way parallel multiplies, squares, inversions and

H : (x : y : z : t) 7−→ (x′ : y′ : z′ : t′) where


x′ = x+ y+ z+ t ,
y′ = x+ y− z− t ,
z′ = x− y+ z− t ,
t′ = x− y− z+ t . 9



An important question

Given the jump in mathematical complexity, we have to ask:

Why bother with genus 2 and Kummer surfaces?

To answer this, let’s go back through the history of ECC...

10



Elliptic curve cryptography: an
approximate history



The beginning

Big bang: Schoof (1983). A polynomial-time point counting
algorithm for elliptic curves.

The first really modern algorithm for elliptic curves.

Not used in crypto at the time (ECC hadn’t been invented yet!),
but the successor of this algorithm (SEA) is vital for generating
secure elliptic curves.

11



1985, a very busy year

1985: Hendrik W. Lenstra announces ECM factorization.

Requires a lot of scalar multiplications on various E :

1. Compute P = (X : Y : Z) 7−→ (Xm : Ym : Zm) = [m]P for a big
smooth m ∈ Z>0 and P ∈ E(Z/NZ).

2. Finally, compute gcd(Zm,N). If this doesn’t factor N,
then take another E and do more scalar multiplication.

ECM was the first modern elliptic-curve algorithm where
general scalar multiplication is the core operation.

Key idea: replace the multiplicative group F×
p in the classic

p− 1 factoring algorithm with an elliptic group E(Fp).

12



History: The dawn of ECC

Having seen Schoof and Lenstra’s results, by the end of 1985,
Victor Miller and Neal Koblitz had independently set out
elliptic curve Diffie–Hellman key exchange (ECDH).

In the last paragraph of his CRYPTO 1985 paper, Miller says
Finally, it should be remarked, that even though
we have phrased everything in terms of points
on an elliptic curve, that, for the key exchange protocol
(and other uses as one-way functions),
that only the x-coordinate needs to be transmitted...
the x-coordinate of a multiple depends only on the x-
coordinate of the original point.

Somehow, cryptographers ignored this.

13



History: Invasion of the Number Theorists

14



Montgomery and the Chudnovskys

By late 1985: practical improvements to Lenstra’s ECM.

Peter L. Montgomery

• Suggested using only x-coordinate arithmetic
• Defined new curve form E : BY2 = X(X2 + AXZ+ Z2),
specially tuned for efficient x-only arithmetic

D. V. and G. V. Chudnovsky

• Compared many classical models of elliptic curves
(some with the x-coordinate trick)

• Also proposed using more general abelian varieties,
showing Kummer surface operations as an example

15



History: Late 1985

16



History: HECC

By 1989: Koblitz suggested using Jacobians of hyperelliptic
curves in place of elliptic curves for crypto.

Curve of genus g over Fp =⇒ Jacobian with ∼ pg elements.

Direct trade-off between Jacobian dimension g and field size:
smaller fields are much faster to work with.

Later, index calculus algorithms for discrete logs make this a
bad trade for genus > 2.

17



History: Party like it’s 1989

18



History: Things get out of hand

19



History: Things get out of hand

By the mid-2000s, 20 years after Miller and Koblitz:

• Constructive curve-based crypto: ECC and genus-2 HECC.
• Elliptic curves were standardized and started to become
really useful.

• But genus-2 crypto parameters weren’t quite there yet:
point-counting algorithms were still being developed.
(This is still an important research problem!)

2005: Dan Bernstein develops Curve25519, which combines

• Miller’s x-only ECDH idea
• Montgomery’s x-only ECM algorithms

20



History: The need for speed

21



Elliptic history: The missing link

In 2005, Pierrick Gaudry found out what would happen
if you tried to do fast ECDH while reading the end of the
Chudnovskys’ paper instead of the end of Montgomery’s paper.

This made the missing link between the Chudnovskys’ “abelian
variety ECM” and genus-2 Diffie–Hellman.

Later, Gaudry’s student Romain Cosset tried using Kummer
surfaces for ECM: fascinating, but not as useful as you’d hope.

22



Elliptic history: Return of the Chudnovskys

23



Elliptic history: Things really get out of hand

24



High-speed scalar multiplication

Bernstein–Chuengsatiansup–Lange–Schwabe (2014):
high-speed Kummer implementations compete with elliptic
scalar multiplication on both high- and low-spec platforms.

Why do Kummer surfaces beat elliptic x-only arithmetic
when genus-2 Jacobians are slower than full elliptic curves?

Part of the answer is that we’re using a half-size finite field.

But symmetry plays a huge role, too, by simplifying the
polynomials that appear in the pseudo-group operations.

25



Real-world efficiency improvements

For example, 256-bit-group scalar multiplication using
µKummer (Renes–Schwabe–S.–Batina) on 8-bit AVR ATmega:

Diffie–Hellman kCycles Stack bytes
Curve25519 3590 548
µKummer 2634 (73%) 248 (45%)

On platforms with vector instructions we can do even better.

26



Signatures for microcontrollers



Signatures for microcontrollers

Kummer surfaces are good for compact, fast Diffie–Hellman,
but we also want signatures.

Problem: verifying signatures means checking equations like

R = [s]P+[e]Q

where R, P, Q are in a group... and Kummer surfaces have no +.

How can we expoit the speed of Kummer/Montgomery
arithmetic for signatures?

27



Conventional approach: Don’t do it.

Don’t do it. Use Kummer/Montgomery for Diffie–Hellman, and
a separate twisted Edwards curve for signatures.

Example: the NaCl library.

Disadvantages:

• slower arithmetic for signatures
• more stack space for Edwards coordinates
• two mathematical objects =⇒ bigger trusted code base
• two separate public key formats for DH and signatures

28



Hybrid approach: Recovery

Use P1/Kummer for Diffie–Hellman. For signatures,

1. Start with group elements P in the Jacobian;
2. Project P to ±P on the Kummer, and compute ±[m]P there;
the ladder actually computes ±[m]P and ±[m+ 1]P, and
the triple (P,±[m]P,±[m+ 1]P) determines [m]P;

3. Point recovery formulæ give [m]P back in the Jacobian,
which has a full group law for signature verification.

Pros: Kummer speed for signatures.
Cons: bigger trusted code base (Kummer + Jacobian);

mixed public key formats; recovery formulæ
require a lot of stack space to compute.

29



Putting the hybrid approach into practice

µKummer (Renes–Schwabe–S.–Batina, CHES 2016):
An open crypto lib for 8- and 32-bit microcontrollers.
Efficient Diffie–Hellman and Schnorr signatures
using Kummer surfaces and genus-2 point recovery.

ATmega (8-bit) Cortex M0 (32-bit)
KCycles Stack bytes KCycles Stack

DH 9739 429 2644 584
Keygen 10206 812 2774 1056
Sign 10404 926 2865 1360
Verify 16241 992 4454 1432

Pros: faster and smaller than the elliptic SOA,
Cons: inconveniently large stack requirements.

30



A new approach: qDSA



Signature verification

All this (heavy) group stuff—twisted Edwards, Jacobians, point
recovery—is only required because the signature verification

R = [s]P+ [e]Q

requires a +, hence a group.

Brutal solution: instead, verify the slightly weaker relation

±R = ±[s]P± [e]Q .

Hamburg’s elliptic Strobe library already (informally) does this!

31



quotient Digital Signature Algorithm

qDSA (Renes–S. 2017): a variant of EdDSA using only
P1/Kummer arithmetic. Cheap extension of Diffie–Hellman
systems to provide signature schemes.

Key pairs: Key pairs: (±Q, x) such that ±Q = ±[x]P. Here ±Q is

• a Curve25519 key (elliptic version)
• a compressed Kummer point (genus-2 version)

Signatures: (±R, s) with ±R ∈ {±([s]P+ [e]Q),±([s]P− [e]Q)}.

Pros: only fast Montgomery/Kummer arithmetic,
unified public-key formats, and less stack space!

Cons: what cons?

32



Checking ±R ∈ {±([s]P± [e]Q)}

To verify signatures: classical theory of theta functions =⇒
biquadratic polynomial equations in the coordinates of ±A, ±B
that are only satisified by the coordinates of ±(A± B).

Elliptic version on E : Y2Z = X(X2 + cXZ+ Z2):

±R ∈

{
±(A+ B) ,
±(A− B)

}
⇐⇒ 2BXZ · XRZR = BZZ · X2R + BXX · Z2R

where BXX = (XAXB − ZAZB)2, BZZ = (XAZB − ZAXB)2,
and BXZ = (XAXB + ZAZB)(XAZB + ZAXB) + 2cXAZAXBZB.

Genus-2 version: 10 biquadratic forms, 6 equations.

33



Results

ATmega (8-bit) Cortex M0 (32-bit)
System Function Cycles Stack Cycles Stack

Ed25519
sign 19048 1473 — —
verify 30777 1226 — —

FourQ
sign 5175 1590 — —
verify 11468 5050 — —

qDSA-E
sign 14070 412 3889 660
verify 25375 644 6799 788

µKummer
sign 10404 926 28635 1360
verify 16240 992 4454 1432

qDSA-KC
sign 10477 417 2908 580
verify 20423 609 5694 808

Ed25519: Nascimento et al (2015); FourQ: Liu et al (2017);
qDSA-E : qDSA/Curve25519; qDSA-KC : qDSA/Gaudry–Schost Kummer 34


	Elliptic curve cryptography: an approximate history 
	Signatures for microcontrollers 
	A new approach: qDSA 

