Asymmetric cryptography
from discrete logarithms

Benjamin Smith

Summer school on real-world crypto and privacy
Sibenik, Croatia // June 17 2019

Inria + Laboratoire d’Informatique de 'Ecole polytechnique (LIX)

Asymmetric crypto settings

It's time to look at asymmetric cryptosystems, especially
signatures and key exchange.

Unlike symmetric systems, asymmetric cryptosystems almost
always' have some algebraic object at their core, such as

- Cyclic groups (from finite rings and elliptic curves)
- Codes from coding theory
- Euclidean lattices

- Multivariate polynomial systems

Security comes from the computational difficulty of some
algorithmic problem in the object.
"Hash-based signatures are a notable exception.

Groups

Asymmetric crypto: groups

Today we concentrate on the simplest option:
discrete-log-based crypto in a finite commutative group G
(in the end, G will generally be cyclic of prime order).

We write the group law in G additively: eg. P® Q =R
Scalar multiplication (exponentiation):
[M:P—P&®---®P
~—————
m copies of P
for any m in Z (with [-m]P = [m](SP)).

Computing (m, P) — [m]P is efficient: O(log m) operations in G.

Naive scalar multiplication: double-and-add

Algorithm 1: Naive scalar multiplication via double-and-add

Input: m= Y7 'm2, Peg

Output: [m]P

R < Og

for i:= 8 —1downto0do invariant: R =[|m/2'|]P
R+ [2]R
if m; = 1then
| R RaP

aa & W N

(o3}

returnR // R=[m]P

Virtually all scalar multiplications involve m ~ #gG.
They are therefore relatively intensive operations.

The Discrete Logarithm Problem (DLP)

Inverting scalar mult. is the Discrete Logarithm Problem (DLP):
Given P .and Q = [m]P in G, compute m.

Oversimplified picture of group-based cryptography:

Public keys are group elements
Private keys are scalars in Z/NZ

Security: breaking a keypair means solving a DLP instance

Discrete logarithms in generic groups

Concretely: the DLP in any G is in O(v/N).
Well-known algorithms include:
- Shanks’ baby-step giant-step: O(+/N) time and space.
A classic space-time tradeoff.
- Pollard’s p algorithm: O(v/N) time, low space.
Probabilistic algorithm based on pseudorandom walks.
More efficient algorithms to attack DLP instances in G

may exist, depending on the concrete realization of G.

For example: the DLP in the additive group (Z/NZ,+)
Is solved by the extended Euclidean algorithm.

Discrete logarithms in black-box groups

In the abstract, the DLP is exponentially hard.

Shoup’s theorem?: if G is a black-box group, then solving
random instances of the DLP in G requires at least Q(,/p)
operations in G, where p is the largest prime divisor of N.

For G of prime order p, this means the DLP is in ©(,/p).

?See the appendix for a more precise statement.

Pohlig-Hellman: reduction to the prime-order case

Theorem (Pohlig and Hellman)
Suppose we know the prime factorization #G = N =[], p;".

Then we can solve DLP instances in G in

n

0(> ei(logN + v/p)))

i=1
G-operations.?

The vital observation is that the DLP in G is essentially only as
hard as the DLP in the largest prime-order subgroup of G:
or, G is only as secure as its largest prime-order subgroup.

3See the appendix for details

Asymmetric keys come in matching (Public,Private) pairs.

- a public key poses an individual mathematical problem;

- the matching private key gives the solution.

Here, keypairs present instances of the DLP in G = (P):
(Public, Private) = (Q,x) where Q=[x]P.

Cryptanalysis can begin as soon as a public key is “bound to”
(i.e. published), not once either key is actually used!

Note that it can be much easier to attack sets of keys than to
attack individual keys.

The challenge

We want to construct cryptographically efficient groups, in the
sense that they are

compact: lots of group per bit;
fast: easy to compute scalar multiplications; and
secure: hard DLPs relative to their size.

Natural candidates: algebraic groups over finite fields F,.

- Elements are tuples of elements of Fg,

- Group operations are defined by polynomial functions.

Examples: finite fields, elliptic curves, ...

10

Concrete groups

For k-bit security against generic algorithms, prime #G ~ 22,

More efficient algorithms to attack DLP instances in G
may exist, depending on the concrete realization of g;
parameters must be adjusted accordingly.

Example: Suppose G C FF, targeting 128-bit security. Then

1. #G must be (a multiple of) a ~ 256-bit prime to defeat
generic discrete log algorithms

2. p must be a ~ 3072-bit prime to defeat the
finite-field-specific Number Field Sieve algorithm

n

Elliptic curves

Elliptic curves

Elliptic curves are a convenient source of groups that can
replace multiplicative groups in asymmetric crypto.

Classic “short” Weierstrass model:
E/Fp 2 =x>+ax+b with a,beFp,4a®+27b>#0.
The points on £ are
EFp) ={(e,B)€FZ: P =0’ +a-a+b}U{O¢}
where Og is the unique “point at infinity”.

E(Fp) is an algebraic group, with O¢ the identity element.

12

Elliptic curve negation: R =S

(D

13

Elliptic curve addition: P® Q =7

(¥

14

Elliptic curve addition: P Q@® R =10

15

Elliptic curve addition: P Q=6R =S

Elliptic curve group operations

If P = Q, the chord through P and Q degenerates to a tangent.

The important thing is that elliptic curve group operations,
being geometric, have algebraic expressions.

= They can be computed as a series of Fp-operations, which
can in turn be reduced to a series of machine instructions.

Operations on £/Fp, : y> = x3 + ax + b:
Negation: &(x,y) = (x, —y) and 60¢ = O¢

Addition (special cases):

(va)@OEZ(X7y) and (X,y)@(X,—y):Og.

Elliptic curve point addition

General addition: write P = (xp, yp), Q = (Xq, Ya),

For P # £+Q, we have P& Q = (Xg, Yg) Where
Xo =N —(Xp+Xa) and Vg = —A(Xe + p)
where
A= (Yp—Ya)/(Xp —Xq)
is the “slope” of the line through P and Q, and
= (Xpya — Xayr)/(Xp — Xa) -

Observe: the curve constants a and b do not appear!

Elliptic curve point doubling

Doubling is an extremely important special case.

We have
[2]P =P & P = (Xp, V21p)
where
P (3x% + a)? — 8xp(x3 + axp + b)
21 403 + axp + b)
and
= X} — ax — 2b — (3xp + a)xpjp .

2yp

In practice we do all this using projective coordinates to avoid
expensive divisions in F, (see the appendix).

19

Group orders and structures

Intuitively: £ is 1-dimensional over Fp, so it should have O(p)
points. In fact, Hasse's theorem tells us that

#EFp)=p+1—t where |[t|<2yp.
The possible group structures are limited:
EFp) =Z/nZ x Z/mZ where m|gecd(n,p—1).

The Hasse interval (p +1—2./p,p + 1+ 2,/p) contains many
primes. Generating prime/near-prime order curves is routine®.

Outside research, use standardized secure curve parameters.

“Though this requires some highly nontrivial algorithms!

20

The Elliptic Curve Discrete Logarithm Problem (ECDLP)

Amazing fact: for subgroups G of general® elliptic curves, we
still do not know how to solve discrete logs significantly faster
than by using generic black-box group algorithms.

In particular: currently, for prime-order G C £(F)p), we can do
no better than O(v/#G).

Apart from improvements in distributed computing, and a
constant-factor speedup of about v/2, there has been
absolutely no progress on general ECDLP algorithms. Ever.

Current world record for prime-order ECDLP: in a 112-bit group,
which is a long way away from the 256-bit groups we use today!

That is, for all but a very small and easily identifiable subset of curves.

21

Why do we use elliptic curves?

Targeting k bits of security:

- Let p be a 2k-bit prime.

- Let £/Fp be an (almost)-prime order elliptic curve over Fp.

- Let G C &(Fp) be the prime-order subgroup, #G ~ p ~ 2%*.
Now public and private keys only require ~ 2k bits each.

Beats 3072-bit public keys in Fj.
The group operations are also much faster.

The take-home: elliptic curves simply offer the shortest keys
at any given security level.

22

Identification

Identity means

- being distinguishable from everyone else
- holding the private key corresponding to a public key

We want authentication: cryptographically identifying the
other participant(s) in a protocol, by verifying a proof that they
hold the secret x corresponding to a given public Q = [x]P.

In symmetric crypto, MACs and AEAD can authenticate data,
but not communicating parties, because both sides hold the
same secret—and a shared identity is no identity.

23

How do you prove your identity?

In our setting, you assert or claim an identity by binding to
(that is, publishing and committing to) a public key Q from a
keypair (Q = [X]P, x).

Prove your identity <= prove you know x.
To formalize this, we introduce three characters:
Prover wants to prove their identity

Verifier wants to verify the identity of Prover

Simulator wants to impersonate Prover

2%

Ineffective identification

Prover Verifier
(Q,x) = KeyPair()

1. Verifier challenges;
2. Prover returns x as s;
3. Verifier accepts iff [s]P = Q.

Problem: Prover no longer has an identity, because they gave

away their secret x.
25

Using ephemeral keys

Trick: hide long-term secrets with disposable one-shot secrets.

Prover Verifier
(Q,x) = KeyPair(')
>Q
(R,r) = KeyPair(') 7l <
>R
S=Xx+r
>s

[sIP?=Q +R

1. Prover generates an ephemeral keypair (R, r), commits R;
2. Verifier challenges;
3. Prover responds by sending R and s = x + r to Verifier.
s reveals nothing about x, because r is random
4. Verifier accepts iff [s]P = Q + R (which is [x]P + [r]P). 26

Problem: Simulator can easily impersonate Prover.

Prover Verifier

(Q,x) = KeyPair()
>Q

Simulator

(R' r) = KeyPair() ?l <

=R'-Q
> R
s=r
________________________________ g T IS
[SIP?=0 + R

Verifier accepts because [s]P=[F]P=R =Q+R
Note: Simulator never knows x—nor the log of R, because

otherwise they would know x!
27

Detecting cheating

How can Verifier detect this cheating, and thus distinguish
between Prover and Simulator?

Prover - sendss=x+r=1log(Q+R),
- knows both x = log(Q) and r = log(R).
Simulator - sends s = log(Q + R),
- knows neither x = log(Q) nor r = log(R).

The difference: knowledge of x, and knowledge of r.

- Verifier can't ask for x.

- Verifier can't ask for the ephemeral secret r = log(R)
because that would also reveal x (since she knows s).

28

Detecting cheating

Solution: let Verifier ask for either s or r,
and check either [s]P = Q + R or [r]P = R accordingly.

- corrects = | know x, if | am honest

- correct r = | was honest, but not that | know x

29

Chaum-Evertse-Graaf (1988)

Prover Verifier
(Q,x) = KeyPair()
------------------------- > Q
(R r) — 'kéj)ﬁé‘i_r_(_} ,,
------------------------- -> R
e = Random({0,1})
L e e
s=ex+r ,,,
------------------------- -> 5
[s]IP ?=[e]Q + R

To cheat, Simulator must guess/anticipate e: 50% chance.

So repeat until Verifier is satisfied it's Prover (say 128 rounds). 30

128 rounds later...

Prover Verifier
(Q,x) = KeyPair() >0
W e i > R ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1
__________________________________ &1 Sroprahmmandom(10.11)
s;=ex+rn; -
1
o IsidP 7= 1640 + R,
i e e
> Rizg o,
... & L RARAOHTO, 1
__________________________________ €128 < 128{ g
S128 = €128X t+ I'12g o<
128
[S128]P 7= [€125]Q + Rizs

31

Schnorr ID (1991)

It is extremely inconvenient to run 128 rounds of the
Chaum-Evertse-Graaf ID protocol:

1. too many interactive rounds of communication
(128 challenges and responses),

2. too much bandwidth
(128 x 256-bit group elements and 128 x 256-bit scalars)

3. too much computation on each side
(128 x 256-bit scalar multiplications for both parties!)

Schnorr identification (1991): “parallelise” the 128 rounds,
replacing 128 one-bit challenges with one 128-bit challenge.

32

Schnorr ID

Prover Verifier
(Q,x) = KeyPair()
>Q
s R
> R
e = Random([0,2%%¢))
e<
e e b
>s
[s]P ?= [e]Q + R

Note: s reveals nothing about x, because r is random

Only one round. Prover does one 256-bit scalar multiplication,
Verifier does one 256-bit and one 128-bit scalar multiplication.

33

Signatures

A digital signature is a non-interactive proof that
the Signer witnessed (created, saw) some data.

Authenticity, message integrity, non-repudiability:

- only the Signer could have created it;

- the Signer could not have created it from any other data;
and

- only the Signer’s public key is needed to verify it.

34

The Fiat-Shamir transform

We build Schnorr signatures from the Schnorr ID scheme by
applying the Fiat-Shamir transform:

1. make the ID scheme non-interactive, and

2. have the signer identify themself to the data (!)
Formally: Fiat-Shamir transforms an interactive proof with
public randomness into a non-interactive proof, by replacing

the verifier with a cryptographic hash function applied to the
protocol’s transcript.

35

Fiat-Shamir: making Schnorr ID non-interactive

Intuition: the hash of R is unpredictable and random-looking,
so it can stand in for a true random challenge.

Prover
(Q,x) = KeyPair(')
------------------------- ~>Q
R Er
e THashm TR
s=ex+r
------------------------- --> S

Verifier
e = Hash(R)
R ?=[S]P - [e]OQ

36

Sending (e, s) instead of (R, s)

Generally the hash e is smaller than R (especially if G = FX), so
we can send (e, s) instead of (R, s) to save some space.

Prover
(Q,x) = KeyPair(')
------------------------- ~->Q
(-R-, r) - ‘I‘(é}ﬁé—i'r'(') ,,,
e = Hash(R)
------------------------- --> e
s=ex+r
------------------------- --> S

Verifier
R = [s]P - [e]Q
e ?= Hash(R)

37

Schnorr signatures (1991): sending (e, s) instead of (R, s)

Hash needs 128 bits of prefix-second-preimage resistance.
Traditionally, no need for collision resistance...

Signer
(Q,x) = KeyPair(')
------------------------- > Q
(R,r) = KeyPair() | M <--ioes Message
e = Hash(R,M)
------------------------- --> e
s=ex+r
------------------------- --> S

Verifier
R = [s]P - [e]Q
e ?= Hash(R,M)

38

Schnorr signatures

Schnorr signatures are proven secure in the random oracle
model (but not in the standard model).

Schnorr patented his signature scheme.

As a result, few people actually used it.

(Instead we had the inferior DSA and ECDSA protocols).
The patent expired in 2008...

39

EdDSA (Bernstein-Duif-Lange-Schwabe-Yang, 2012)

EdDSA: a contemporary Schnorr signature variant.
It is deterministic: same signer+message = same signature.

Fix a 28-bit hash function H and a secure elliptic curve £/F,
with a B-bit prime-order subgroup G = (P) C &£(Fp).

Key gen. Choose a random S-bit string, k.
Let x and y be the §-bit strings st. x || y = H(R).
Public key: Q = [x]P. Secret key: k (not x).
Sign a message M: let x || y = H(R),
r=H(y || M),R=[rlP,s=r+HR]| Q| M)x
Signature: (R,s).
Verify a putative signature (R,s) on M under Q:
accept iff R=[s]P — [H(R || Q || M)]Q.

40

Key exchange

The need for key agreement

Key agreement is a fundamental operation in cryptography.

It allows two principals (“Alice” and “Bob”) to establish a
shared secret key without prior contact.

The classic protocol for this is Diffie-Hellman Key Exchange,
historically one of the first asymmetric crypto algorithms.

- Public discovery: Diffie and Hellman, 1976
- Secret discovery: GCHQ, UK, early 1970s.

More generally, we use Key Encapsulation Mechanisms (KEMs).

41

Diffie-Hellman key exchange (< 1976)

Alice Bob
a := random(N) b := random(N)
A :=[a]P B :=[b]P

— |

C:=[alB C:=[blA

Correctness: [a][b] = [b][a] = [ab] for all a,b € Z.

Alice & Bob now use a KDF (Key Derivation Function, e.g. HKDF)
to derive a shared cryptographic key from the shared secret S.

Warning: no authentication! "

The Diffie-Hellman problem

Diffie-Hellman security depends not (directly) on the DLP, but
rather on the Computational Diffie-Hellman Problem (CDHP):

Given (P, Qa = [xa]P, Qg = [xg]P), compute S = [xaxz]P.
Clearly DLP — CDHP.

What about CDHP = DLP? Not obvious!

- Conditional polynomial-time reduction (Maurer-Wolf, ...)

- Unconditional subexponential reduction for the G we use
in practice (Muzerau-Smart-Vercauteren).

More detail on Maurer: see the appendix

43

Modern Diffie-Hellman key exchange

Alice Bob
a := random(N) b := random(N)
A :=[a]P B :=[b]P
>—<—
C:=[alB C:=[b]A

Notice DH never directly uses the group structure on G.

All we need for DH is a set G, and big sets A, B of efficiently
samplable and computable functions G — G such that

[a][b] = [b][a] for all [a] € A and [b] € B, and the corresponding
CDHP is believed hard. A

Modern Diffie—-Hellman

Diffie-Hellman does not need a group law, just scalar
multiplication; so we can “drop signs” and work modulo ©.

Elliptic curves: work on x-line P! = £/(%1).

- The equivalence class {P = (xp, ¥p), P = (Xp, —yp)} IS
represented by the x-coordinate x(P) = xp.

- Projectively: x((X: Y:2)) = (X:2Z) € P' when Z # 0, and
X(0g)) =x((0:1:0)) = (1:0).
Advantage: save time and space by ignoring y.

This is how we do DH in the real world today, using
Curve25519/X25519.

45

Diffie-Hellman modulo signs

The Diffie-Hellman protocol is now

a,x(P)) — xa = x([a]P);
b,x(P)) — xg = x([b]P);
a,xg) — xs = x([a][b]P);
b, xa) — xs = x([b][a]P).

Alice computes (
Bob computes (
Alice computes (
(

Bob computes

)

This is mathematically well-defined, but we sill need to
compute (m,x(P)) — x([m]P) efficiently, without using .

46

Key fact: { } determines {

oP

P& Q

47

Pseudo-group operations

Any 3 of {x(P),x(Q),x(P & Q),x(P & Q)} determines the 4th, so
we can define

Pseudo-addition:
XADD : (x(P),x(Q),x(P© Q)) — X(P @ Q)
Pseudo-doubling:
XDBL : x(P) — x([2]P)

We evaluate x(P) — x([m]P) by combining xADDs and xDBLs
using differential addition chains: scalar mult algorithms
where every @ has summands with known difference.

Classic example: the Montgomery ladder.

48

The Montgomery ladder in a group

Algorithm 2: The Montgomery ladder in a group
Input: m = 37 'm;2' and P

Output: [m]P
1 (Ro, R1) + (0,P) // Invariant: Ri=Ry®P
2 foriin(B—1,...,0)do invariant: Ry = [|m/2'|]P
3 if m; = 0 then
4 | | (Ro,R1) + ([2]Ro,Ro @ Ry)
5 else
6 | | (Ro,Ri) « (Ro® Ry, [2]Ry)
7 return Ro // Ro=[m]P, Ri=[m+1]P

For each addition Ry @ R;, the difference Rqg © Ry is fixed
(& known in advance!) = easy adaptation from & to P".

49

The Montgomery ladder with pseudo-operations

Algorithm 3: The Montgomery ladder on the x-line P’
Input: m = -7~ "'m;2' and x(P)
Output: x([m]P)

1 (X0, 1) <= (x(0),x(P))

2 foriin(s—1,...,0)do

3 if m; = 0 then

4 | | (x0,x1) ¢ (XDBL(x0), XADD(Xo, X1, X(P))

5 else

6 | | (x0,x1) « (XADD(Xo, X1, X(P)), XDBL(x1))

7 return X // xo=x(Im]P), Ry =x([m+1]P)

The loop invariant is (xo,x1) = (x([Lm/2'|]P), x([Lm/2'| + 1]P)).

50

Side-channel concerns

Cryptographic algorithms must anticipate basic side-channel
attacks (especially timing attacks and power analysis).

Diffie-Hellman implementations must be uniform and
constant-time with respect to the secret scalars:
- No branching on bits of secrets
eg. No if(m == 0): ... with m; secret
- No memory accesses indexed by (bits of) secrets
(eg. No x = T[m] where m is secret)

What we want is to have exactly the same sequence of
computer instructions for every possible secret input.

51

Towards a uniform/constant-time Montgomery ladder

Algorithm 4: The Montgomery ladder for X25519
Input: m = 37" m;2’ and x = x(P) with P in £(F))
Output: x([m]P)
1 U<+ (x,1)
2 (Xo,X1) < ((1,0),u)
foriin(p—1,...,0) do
if m; = 0 then
‘ (Xo,X1) <= (XDBL(Xg), XADD(Xg, X1, U))
else
t (X0, X1) < (XADD(Xo, X1, u), XDBL(X1))

[S

~

8 return Xg

We must ensure xDBL & xADD are uniform, and convert the if
to a constant-time conditional swap (see appendix). 5)

Towards a uniform/constant-time Montgomery ladder

Algorithm 5: The Montgomery ladder for X25519
Input: m = 37" m;2’ and x = x(P) with P in £(F))
Output: x([m]P)

17U+ (x,1)

2 (Xo,%1) < ((1,0),u)

3 foriin(s—1,...,0)do

(X0, X1) <= SWAP(mj, (Xo0,%1))

(X0, X1) <= (XDBL(X0), XADD(Xg, X1, U))

(X0, Xq) = SWAP(mj, (X0, X1))

(<) B G 2 B

~

return X

SWAP(b, (vo, v1)) returns (vp, b1_p) (see appendix).
Easy exercise: reduce the number of SWAPs from 28 to 5 + 1.

53

X25519

x-only Diffie-Hellman is a cute mathematical/algorithmic trick.
It's also the way we do Diffie-Hellman in the real world today.

X25519 is a Diffie-Hellman key-exchange algorithm in TLS 1.3,
OpenSSH, Signal/Whatsapp, and other applications...

- Based on Bernstein’s Curve25519 software (2006)
- Formalized in RFC7748, Elliptic curves for security (2016)

A massive upgrade on traditional ECDH (used e.g. in TLS < 1.2),
which was based on NIST's standard prime-order curves.

More detail: see the appendix.

54

From groups to group actions

The quantum menace

Shor’s quantum algorithm solves DLP in polynomial time.

Attacking real-world DH instances with Shor requires large,
general-purpose quantum computers.

Q: Will sufficiently large quantum computers ever be built?
Say yes if you want to get funded.

Global research effort: replacing classic group-based
public-key cryptosystems with postquantum alternatives.

55

Key exchange from group actions

Funnily enough, the closest thing we have to postquantum DH
is based on a group and elliptic curves!

Classic DH: Z/NZ acts on a group G C E(Fp).

A =]a]P B = [b]P S = [a]B = [b]A = [ab]P
Modern DH: Z/NZ acts on a quotient set

A=+[a]P B==£[b]JP S=+[a]B==+[b]A = +[ab]P
Group-action DH: a (multiplicative) group & acts on a set

A=a-P B=b-P S=a-B=b-A=ab-P

56

Group-action Diffie-Hellman

Group-action DH: a (multiplicative) group & acts on a set S.

A=a-P B=b-P S=a-B=b-A=ab-P

This is a logical continuation of modern Diffie-Hellman:

- composition in DH is all in the scalars, so we replace the
ring Z/NZ with a group & (a simpler algebraic structure
with composition)

- vulnerability to Shor’s algorithm comes from the group
structure on the public keys, so we remove this entirely
and work with an unstructured set S instead.

Problem: finding (&, S) such that the action (a,P) — a-Pis
efficient and the DLP and CDHP analogues are hard.

57

CSIDH: candidate postquantum group action

CSIDH (Castryck, Lange, Martindale, Panny, Renes 2018): a
candidate postquantum group action for key exchange.

Based on ideas and techniques from Couveignes,
Rostovtsev-Stolbunov, and De Feo-Kieffer-Smith.

Based on CM theory for a quadratic imaginary field K:

Group: & = Cl(Ok), the group of ideal classes of the
maximal order of K

Space: S = {£/Fq | End(€) = Ok} /(Fg-isomorphism)

Action: Ideals a in Ok correspond to isogenies
¢q: € — E/E[a]l =: a-E. This action extends to
fractional ideals and factors through C1(Ok).

Details: see Joost Renes’ talk, or ask us any time this week!

58

Appendices

Conditional swaps

Conditional swap

2

Remove ifs using classic constant-time conditional swaps.
This can be done in several ways.

Here's a conditional swap for a pair of binary values, viewed as
integers, using only arithmetic operations:

Algorithm 6: Conditional swap using arithmetic operations
Function SWAP

Input: b € {0,1} and (Xo, X1)

Output: (xo,X1) If b =0, (X1,X0) if b =1

return ((1— b)xo + bxq, bxo + (1 — b)xy)

Projective coordinates

Projective coordinates

In practice, we almost always use projective coordinates for &,
putting x = X/Z and y = Y/Z. The curve equation becomes

E:YZ=X +aXZ*+bZ’.
The points become
E(Fp) = {(a :B:7):a, B,y € Fp,ﬁzfy = o’ + aay? + b'y3}
modulo projective equivalence, which is
(X:Y:2)=(M:AY:AZ2) forall AeF).
We exclude (0 : 0: 0), which is not a projective point.

The point at infinity Og is (0 : 1: 0) in projective coordinates.
It is the unique point where Z = 0.

Compressing points

We use projective points (X : Y : Z) throughout our algorithms,
but these require 3 log, p bits each.

To store and transmit points as public keys, we compress them
to log, p + 1 bits as follows:

1. Normalize (X:Y:Z)to (x:y:1)=(X/Z:Y/Z:1).

2. Compute® the “sign” o of y in F,.

3. Store (x,0).

To recover y from (x, o), compute the square root of x> + ax + b
with sign o.

®There is no canonical definition, but you could use e.g. sign(y) = LSB(y).

Coordinate sytems

Why use projective coordinates?

Mathematically, projective coordinates give a unified form for
all points on the curve: Og = (0 :1:0) is a point like any other,
not a special symbol.

Algorithmically, projective coordinates let us avoid expensive
divisions in Fp. The Z-coordinate “accumulates denominators”.

In practice, we use not only projective coordinates, but also
alternative models for the curve equation and group law
to gain efficiency and facilitate implementation safety.

We will see an example of this when we cover modern ECDH,
which uses Montgomery curve arithmetic.

Montgomery arithmetic and X25519

Montgomery models for elliptic curves

In the following, we fix a Montgomery curve’
£ BY?Z = X(X* + AXZ 4 7?)
with A # +2 and B # 0 in Fp.

Notation: given points P and Q in £(Fp), we write

P=(Xp:Yp:2Zp), PoQ=(Xg:Ye :Zg),
Q:(XQYQZQ)v P@Q:(X@Y@Ze)

’Observe: we can convert to and from a short Weierstrass model for £ via
X:Y:2)— (X—=AZ/3:Y:2),so all the elliptic curve theory we have already
described transfers to this curve.

Pseudo-addition on & : BY?Z = X(X> + AXZ + 72):
XADD : (x(P),x(Q),x(P© Q)) — x(P© Q)
We use
(Ko :Zo) = (Zo - [U+ VP Xo - [U-WP)

where
U= (Xp — Zp)(Xa + Za)
V= (Xp + Zp)(Xq — Za)

Pseudo-doubling on & : BY?Z = X(X> + AXZ + Z?):

XDBL : x(P) — x([2]P)

We use
(Xp : Zpp) = (Q-R: S+ (R+ 2£29))
where
Q= (Xp +Zp)?,
R = (Xp—Zp)?,

S=4Xp-Zp=Q—R.

Curve25519

Bernstein (PKC 2006) defined the elliptic curve
£ Y?Z = X(X* + 486662 - XZ +7°) over F)

where p = 2%> —19.
The curve has order #&(Fp) = 8r, where r is prime.

If we let B be any nonsquare in [y, then the quadratic twist
E' 1 B-Y?Z = X(X* + 486662 - XZ + Z%)

has order #&'(Fp) = 4r', where r’ is prime.

The X25519 function

The X25519 function maps Zxo x Fp into Fp, via
(M, U) — Upm = Xm -zfﬁfz)

where (Xm @ % : zZm) = [M](u : * : 1) € E(Fp) U E'(Fp).

Note: generally zym # O, in which case (Upm % : 1) =[m](u : *: 1)
in E(Fp) or E'(Fp).

Exercise: for any given u, inverting (m, u) — Uy, amounts to
solving a discrete logarithm in either E(FFp) or &'(Fp).

Diffie—Hellman with X25519

The global public “base point” is u; =9 € Fp.
The point (uq : x : 1) € £(Fp) has 252-bit prime order .

The “scalars” are integers in S = {2%% +8i: 0 < i < 221},

Alice samples a secret a € S, computes
A = uq = X25519(a, uq), publishes A.

Bob samples a secret b € S, computes
B := up = X25519(b, u1), publishes B.

Alice computes the shared secret uy, as X25519(a, B)

Bob computes the shared secret ug, as X25519(b, A).

Discrete logarithms in generic
groups

Discrete logarithms in generic groups

Shoup’s notion of a probabilistic generic algorithm: operating
on Z/NZ, elements encoded in a set of bitstrings S C {0, 1}*.
Compute @, etc., on elements of S using oracles.

Idea: generic algorithms work independently of the encoding
o :Z/NZ — S, so cannot use any information about the
representation of elements of Z/NZ (or, more generally, any G).
Theorem (Shoup)

If A'is a generic algorithm making at most m oracle queries,
and x € Z/NZ and the encoding o is chosen at random, then
the probability that A computes x from o(1) and o(x) is
O(m?/p) (with the probability taken over the choice of x and
the coin flips of A), where p is the largest prime divisor of N.

Square-root DLP algorithms

Algorithm 7: Baby-step giant-step algorithm
Function BSGS
Input: Pand Q in G = (P) of order N
Output: x such that Q = [x]P
B < [V/N]; R + P; Initialize a hash table T
for iin(1,...,B)do invariant: R =[P
Hash R and store T[R] + i

R+~ R®P

=y

v > W N

for jin (0,...,B)do invariant: S =[x —jB]P
S+ QoJ]rR
if SeT then S=[i]P,sox=jB+i

| return (j- B+ T1S])

o 0 N O

Pohlig-Hellman I: Discrete logs in prime-power groups

=y

N o v B w N

Algorithm 8: Discrete logarithm in a prime-power group.

Function DISCRETELOGPRIMEPOWER
Input: P and Q in G = (P) where #G = p® for some p, e

Output: x such that Q = [x]P

y<+0

S« [p&IP // in order-p subgroup

for iin (0,..e-1)do invariant y = x mod p'
T« [p*"“1(Qey]P) // in order-p subgroup
d « BSGS(T,S) // or use Pollard p
yey+p-d

return y

For DISCRETELOGPRIME we can use (e.g.) BSGS, in time O(,/p).

Pohlig-Hellman Il: Reduction to prime power order

g & w N

Algorithm 9: Discrete logarithm in a group where the prime
factorization of the order is known.

Function DISCRETELOGCOMPOSITE

Input: Pand Q in G = (P) where #G = N = [, p{’

Output: x such that Q = [x]P

foriin(1,...,n) do
P; < [N/p{]P // in order-p subgroup
Qi « [N/p{]Q // in order-p subgroup
X;j <— DISCRETELOGPRIMEPOWER(Q;, P)).

return CHINESEREMAINDERTHEOREM((X1, P5'), - - -, (Xn, P5"))

DLP with a CDHP oracle:
the Maurer reduction

Conditional : the Maurer reduction

We want to solve DLP instances in a group G of prime order p,
given a DH oracle for G.

First step: find/precompute an £/F, : Y2 = X3 + aX+ b
such that £(FF,) is cyclic and has polynomially smooth order.

The idea: £(Fp) must have a polynomial-time DLP algorithm
using only basic group operations (e.g. Pohlig-Hellman).

Caveat: constructing such an &£ in polynomial time is hard!
- Maurer supposes this is feasible (conditional reduction)

- For cryptographic p we are often lucky
- In general, this seems an impossibly strong hypothesis

The Maurer reduction — continued

We want to solve a DLP instance Q = [x]P in G.

Given: a smooth-order auxiliary curve £/Fp, : Y2 = X3+ aX + b
and a generator (Xo, yo) for £(Fp).

The CDHP oracle lets us compute [F(x)]P for all polynomials F.

1. Use Tonelli-Shanks to compute® an R = [y]P such that
[y2]P = [x* + ax + b]P.
Now (Q, R) = ([X]P, [v]P) € £(G); we still don't know x or .
2. Compute Qo = [xo]P and Ro = [yo]P)
3. Solve the DLP instance (Q,R) = [€](Qo, Ro) in £(G) for e.

4. Compute (x,y) = [e](X0,Y0) in E(Fp) and return x.
8If this fails (i.e. x> + ax + b is not square in Fy): replace Q = [x]P with
Q + [6]P = [x + 6]P for some ¢ and try again...

	Groups
	Elliptic curves
	Identification
	Signatures
	Key exchange
	From groups to group actions
	Appendix
	Appendices
	Conditional swaps
	Projective coordinates
	Montgomery arithmetic and X25519
	Discrete logarithms in generic groups
	DLP with a CDHP oracle: the Maurer reduction

