
PanORAMa: Oblivious RAM 
with Logarithmic Overhead

Sarvar Patel, Giuseppe Persiano, Mariana Raykova, Kevin Yeo









Bob knows what files I 
am accessing

Most frequently used file



Bandwidth is 
expensive

Retrieve the 
whole database



Oblivious RAM [GO’96]

polylogarithmic overhead 
(amortized) 

ORAM

Access pattern hiding



How Efficient Can an ORAM 
Construction be?



ORAM Lower Bound



ORAM Lower Bound

● Goldreich-Ostrovsky’96 
○ Lower bound O(log

C
 N) blocks for database of N blocks and client memory of C blocks 



ORAM Lower Bound

● Goldreich-Ostrovsky’96 
○ Lower bound O(log

C
 N) blocks for database of N blocks and client memory of C blocks 

○ Caveats:
■ Server only moves and retrieves blocks (does not do any computation)
■ Constructions with statistical security
■ Constructions that work for any block size
■ The client can have oracle access to a private random function



ORAM Lower Bound

● Goldreich-Ostrovsky’96 
○ Lower bound Ω(log

C
 N) blocks for database of N blocks and client memory of C blocks 

○ Caveats:
■ Server only moves and retrieves blocks (does not do any computation)
■ Constructions with statistical security
■ Constructions that work for any block size
■ The client can have oracle access to a private random function

● Boyle-Naor’16
○ Formalized the “balls and bins” model
○ Evidence for the hardness of extending the lower bound beyond the ball and bins model

■ Reduction from sorting circuits to ORAM



ORAM Lower Bound

● Goldreich-Ostrovsky’96 
○ Lower bound Ω(log

C
 N) blocks for database of N blocks and client memory of C blocks 

○ Caveats:
■ Server only moves and retrieves blocks (does not do any computation)
■ Constructions with statistical security
■ Constructions that work for any block size
■ The client can have oracle access to a private random function

● Boyle-Naor’16
○ Formalized the “balls and bins” model
○ Evidence for the hardness of extending the lower bound beyond the ball and bins model

■ Reduction from sorting circuits to ORAM

● Larsen-Nielsen’18
○ Lower bound extended to computational online ORAM model (only block uploads/downloads)



PanORAMa:



● New Oblivious RAM Construction
○ Improved asymptotic communication 

■ O(log N . log log N) blocks

○ Block size Ω(log N)

○ Can be instantiated in the balls and bins model

○ Follows the hierarchical paradigm
PanORAMa:



PanORAMa:

● New Oblivious RAM Construction
○ Improved asymptotic communication 

■ O(log N . log log N) blocks

○ Block size Ω(log N)

○ Can be instantiated in the balls and bins model

○ Follows the hierarchical paradigm

● New Oblivious Hash Table Construction

○ Obliviousness for non-repeating queries

○ Efficient initialization from random array 

○ Amortized query communication complexity

■ O(log N + poly(log log ƛ))



PanORAMa:

● New Oblivious RAM Construction
○ Improved asymptotic communication 

■ O(log N . log log N) blocks

○ Block size Ω(log N)

○ Can be instantiated in the balls and bins model

○ Follows the hierarchical paradigm

● New Oblivious Hash Table Construction

○ Obliviousness for non-repeating queries

○ Efficient initialization from random array 

○ Amortized query communication complexity

■ O(log N + poly(log log ƛ))

● New Multi-Array Shuffle Algorithm
○ Efficient shuffle for input with entropy

○ Shuffle multiple sorted arrays

■ O(N log log ƛ + N log N log ƛ) 

■ Not too many very small arrays



Construction Paradigms

● Hierarchical ORAMs
○ Worst case  ≠ Average case

○ Computation assumption beyond 

encryption in most cases

● Tree ORAMs
○ Worst case = Average case

○ Encryption - the only computational 

assumption



Construction Paradigms

● Hierarchical ORAMs
○ Worst case  ≠ Average case

○ Computation assumption beyond 

encryption in most cases

Shuffled items
Accessed once

ShuffleAccessed item

● Tree ORAMs
○ Worst case = Average case

○ Encryption - the only computational 

assumption



Construction Paradigms

● Hierarchical ORAMs
○ Worst case  ≠ Average case

○ Computation assumption beyond 

encryption in most cases

● Tree ORAMs
○ Worst case = Average case

○ Encryption - the only computational 

assumption

PMAP = {item, path}{all items} 

Lookup path Stored 
recursively



Construction Paradigms

● Hierarchical ORAMs
○ Worst case  ≠ Average case

○ Computation assumption beyond 

encryption in most cases

● Tree ORAMs
○ Worst case = Average case

○ Encryption - the only computational 

assumption



Timeline and Complexity

GO’96

Square Root ORAM
Hierarchical ORAM: O(log3 N)

PR’10

Cuckoo Hashing
Security issue 

GM’11

Binary tree per level
Only Comp. assump.: 
Encryption; O(log3 N)

DMN’11

Fixed Cuckoo Hash approach
 O(log3 N)

SCSL’11

First Tree ORAM: O(log3 N)
Eviction: two nodes per level

KLO’11

Cuckoo Hash + level partition
Best Complexity: Balls & Bins, Any 
block size: O(log2 N / log log N)

SDSFRYD’13

Homomorphic encryption
Onion-ORAM: 
O(1) blocks of size Ω(log6 N)

GGHJRW’13

Deterministic Eviction 
Schedule: O(log3 N/ log log N)

WCS’15

Circuit ORAM, matches
Path ORAM for circuit 
complexity in MPC

DDFRSW’15

Path ORAM: evict on a path
O(log2 N) blocks of size Ω(log N)
O(log N) blocks of size Ω(log2 N)

CGLS’17

Unified framework for 
all hierarchical ORAM

MZ’14

Offline ORAM:
O(log n log log n)



The Hierarchical ORAM Paradigm 



Hierarchical Construction

Level i has capacity for all items assigned to 
levels 1 to i at any moment (2i items)

log N

Level 

1 

log N - 1

2 

i 



Hierarchical Construction: Search

log N

Level 

1 

log N - 1

2 

i 

Linear scan



Hierarchical Construction: Search

log N

Level 

1 

log N - 1

2 

i 

Linear scan

Look up searched item

Look up searched item Item found ✔



Hierarchical Construction: Search

log N

Level 

1 

log N - 1

2 

i 

Linear scan

Look up searched item

Look up searched item Item found ✔

Look up random item



Hierarchical Construction: Search

log N

Level 

1 

log N - 1

2 

i 

Linear scan

Look up searched item

Look up searched item Item found ✔

Look up random item

M
ove Item

 



Hierarchical Construction

log N

Level 

1 

log N - 1

2 

i 

Deterministic schedule shuffle:
Shuffle all items residing in level 1 to i and place 
them in level i, obliviously!



Oblivious Hash Table [CGLS’17]

Instantiate each level with 
oblivious hash table (OHT) 

● Access pattern hiding for 
non-repeating queries

log N

Level 

1 

log N - 1

2 

i 

Efficiency costs:
● Query cost
● Oblivious initialization

○ During shuffle



Existing Oblivious Hash Table Constructions



Existing Oblivious Hash Table Constructions

PRF(item)

log n
GO’96:

● Use pseudo-random function to match items 
to level buckets

● Query: retrieve item bucket O(log n)
● Oblivious initializations: several oblivious 

sorts O(n log n)



Existing Oblivious Hash Table Constructions

PRF(item)

log n
GO’96:

● Use pseudo-random function to match items 
to level buckets

● Query: retrieve item bucket O(log n)
● Oblivious initializations: several oblivious 

sorts O(n log n)

T1

T2

Cuckoo Hash: h1(item) or h2(item)

GM’11:
● Cuckoo hash table
● Query: O(1)
● Oblivious initialization: oblivious sort O(n log n)



Existing Oblivious Hash Table Constructions

log N Cuckoo hash tables

KLO’12:
● Level size n: log n Cuckoo hash tables; 

each shuffle creates a new one
● Query all Cuckoo tables: O(log n)
● Oblivious initialization: log n oblivious 

sorts on n/log n items per n queries: 
O(log n)



Oblivious Two Tier Hash Table [CGLS’17]



Oblivious Two Tier Hash Table [CGLS’17]

Use PRF1 to assign items into bins

log n

: number of bins B = n/logε ƛ

Tier 1



Oblivious Two Tier Hash Table [CGLS’17]

Use PRF1 to assign items into bins

log n

Z=logε ƛ

Overflow buffer 
of size 288.Be-Z/6

: number of bins B = n/logε ƛ

Tier 1



Oblivious Two Tier Hash Table [CGLS’17]

Use PRF1 to assign items into bins

log n

Z=logε ƛ

Overflow buffer 
of size 288.Be-Z/6

: number of bins B = n/logε ƛ

Use PRF2 to assign items into bins

Tier 1

Tier 2

Insert in Tier 2 table

Initialization:

Oblivious sort!

Initialization:

Oblivious sort!



Oblivious Two Tier Hash Table [CGLS’17]

Tier 1

Tier 2

Retrieve bin PRF1(query)

If not found, Retrieve bin PRF2(query)
else, Retrieve random bin.

Amortized complexity:

O(log 2 N / log log N)



PanORAMa Overview
● Leverage entropy reuse to shuffle 

more efficiently



PanORAMa Hierarchical Construction

log N

Level 

1 

log N - 1

2 

i 



PanORAMa Hierarchical Construction

OHT Extract: extract unqueried items 
from each level in shuffled order

log N

Level 

1 

log N - 1

2 

i 



PanORAMa Hierarchical Construction

OHT Extract: extract unqueried items 
from each level in shuffled order

log N

Level 

1 

log N - 1

2 

i 

Multi-array shuffle: shuffle together all 
randomly permuted input arrays



PanORAMa Hierarchical Construction

OHT Extract: extract unqueried items 
from each level in shuffled order

log N

Level 

1 

log N - 1

2 

i 

Multi-array shuffle: shuffle together all 
randomly permuted input arrays

OHT Build: build an OHT 
from the permuted array

No Oblivious Sorting 

on a whole large level!



Oblivious Hash Table
● Oblivious initialization in o(n log n) 

leveraging input entropy



Oblivious Hash Table 

● Definition. Oblivious Hash Table (OHT):
○ OHT.Init - permutes input
○ OHT.Build - builds OHT from permuted input
○ OHT.Lookup - execute a query
○ OHT.Extract - extracts an array that contains unqueried item in random order

● Security. 
○ Access hiding: non-repeating query sequences
○ Extract output indistinguishable from random permutation



Oblivious Hash Table 

● Definition. Oblivious Hash Table (OHT):
○ OHT.Init - permutes input
○ OHT.Build - builds OHT from permuted input
○ OHT.Lookup - execute a query
○ OHT.Extract - extracts an array that contains unqueried item in random order

● Security. 
○ Access hiding: non-repeating query sequences
○ Extract output indistinguishable from random permutation

● Oblivious bin = mini OHT
○ OHT that is instantiated on small input size O(polylog N)
○ We can use oblivious sorting without hurting efficiency



Oblivious Bin

● Oblivious Cuckoo Bin ● “Dynamic” Bin

T1

T1

● Cuckoo hash
● Oblivious sort to build and extract

○ Add n dummies in Build
○ Extract n items in Extract

● Items need to be added continuously in 
non-amortized manner

● Smallest ORAM level
● Size: O(log7 n)
● Use existing oblivious ram constructions, 

e.g. Goodrich, Mitzenmacher [GM’11]

stash



Oblivious Hash Table 



Oblivious Hash Table 

cutoff:
(1-ε)logc ƛ

log n

Distribute items into B = n / logc ƛ bins using a PRF



Oblivious Hash Table 

cutoff:
(1-ε)logc ƛ Sample new loads 

from binomial dist. of 
(1-𝛅)n item in B bins 

log n

Distribute items into B = n / logc ƛ bins using a PRF

Oblivious resampling of bucket loads: Pr[new load > cutoff] < negl(ƛ) & Pr[#items < new load] < negl(ƛ)



Oblivious Hash Table 

cutoff:
(1-ε)logc ƛ Sample new loads 

from binomial dist. of 
(1-𝛅)n item in B bins 

log n

Distribute items into B = n / logc ƛ bins using a PRF

Obliviously move items above 
new loads to overflow buffer

Oblivious resampling of bucket loads: Pr[new load > cutoff] < negl(ƛ) & Pr[#items < new load] < negl(ƛ)



Oblivious Hash Table 

cutoff:
(1-ε)logc ƛ Sample new loads 

from binomial dist. of 
(1-𝛅)n item in B bins 

log n

Distribute items into B = n / logc ƛ bins using a PRF

Obliviously move items above 
new loads to overflow buffer

Oblivious resampling of bucket loads: Pr[new load > cutoff] < negl(ƛ) & Pr[#items < new load] < negl(ƛ)

Smallest level: N / log N



Oblivious Hash Table: Create Oblivious Bins 

OBin OBin OBin

OBin

OBin

OBin

OBin
Items from Cuckoo stash are

● (encrypted) indexed with 
their source bucket 

● merged with items used 
to instantiate the last 
level 



Oblivious Hash Table: Query 

OBin OBin OBin

OBin

OBin

OBin

OBin.Lookup(query)

OBin



Oblivious Hash Table: Query 

OBin OBin OBin

OBin

OBin

OBin

OBin.Lookup(query)

If not found, OHT[PRF2(query)].Lookup(query)
If found, OBin[random].Lookup(rand)

If not found, OHT[PRF1(query)].Lookup(query)
If found, OBin[random].Lookup(rand)OBin



Oblivious Hash Table: Extract 

Move items with origin in the 
Cuckoo stashes back to their 
corresponding levels



Oblivious Hash Table: Extract 

OBin.Extract OBin.Extract OBin.Extract OBin.Extract



Oblivious Hash Table: Extract 

OBin.Extract OBin.Extract OBin.Extract OBin.Extract
OHT.Extract: append outputs of OBin.Extract

● Items already randomly distributed 
across OHT bins 



Oblivious Hash Table Amortized Communication Complexity 

over N accesses for OHT on N items:

● OCuckooBin: O(log N + (log log ƛ))



Oblivious Multi-Array Shuffle
● Random shuffle in o(n log n) leveraging 

input entropy: independently sorted 
input arrays



PanORAMa Hierarchical Construction

OHT Extract: extract unqueried items 
from each level in shuffled order

log N

Level 

1 

log N - 1

2 

i 

Multi-array shuffle: shuffle together all 
randomly permuted input arrays

OHT Build: build an OHT 
from the permuted array



Oblivious Multi-Array Shuffle  

A1 AL

D

A1 , …, ALare randomly permuted
⇒ it suffices to choose a random function     

Assign: [n]→ [L]



Oblivious Multi-Array Shuffle  

A1 AL

D

Any subarray in D is assigned 
approximately proportional fractions 
from A1, …, AL under a random Assign

A2



Oblivious Multi-Array Shuffle  

A1 AL

D

b, Enc(Assign(b)) Obliviously Sample



Oblivious Multi-Array Shuffle  

A1 AL

D

Binin
1 Binin

2 Binin
m’-1 Binin

m’

b, Enc(Assign(b))



Oblivious Multi-Array Shuffle  

A1 AL

D

Binin
1 Binin

2 Binin
m’-1 Binin

m’

Binout
1 Binout

2 Binout
m-1 Binout

m

b, Enc(Assign(b))

m’ ≈ (1- ε) m



Bin Shuffle  

Binin
i

Binout
i

For each j in [L], Binin
i  contains more elements from Aj 

than the number of elements from Aj assigned to Binout
i    



Bin Shuffle

Binin
i

Binout
i

Add dummies with each array index



Bin Shuffle

Binin
i

Binout
i

Add dummies with each array index

A1 A2 AL-1
AL

Oblivious Sort by input array index



Bin Shuffle

Binin
i

Binout
i

Add dummies with each array index

Oblivious Sort by input array index

A1 A2 AL-1
AL

Moving: real items which 
will be place in Binout

i

Overflow: real or dummy 
items which will be 
returned as overflow

Unused: dummy which will 
be discarded



Bin Shuffle

Binin
i

Binout
i

Add dummies with each array index

Oblivious Sort by input array index

A1 A2 AL-1
AL

Moving: real items which 
will be place in Binout

i

Overflow: real or dummy 
items which will be 
returned as overflow

Unused: dummy which will 
be discarded

A1
A2 AL

Moving

Leftover1 LeftoverL

Overflow Unused



Bin Shuffle

Binin
i

Binout
i

A1
A2 AL

Moving



Bin Shuffle

Binin
i

Binout
i

A1
A2 AL

Moving

A1
A2 ALObliviously Sort 

according to Assign(b)

Pairs: (b, Assign(b))



Bin Shuffle

Binin
i

Binout
i

A1
A2 AL

Moving

A1
A2 ALObliviously Sort 

according to Assign(b)

Pairs: (b, Assign(b))

Match pairs from Binout
i  

with content from Binin
i



Bin Shuffle

Binin
i

Binout
i

(b, Assign(b) = 1) (b’’, Assign(b’’) = L) (b’’’, Assign(b’’’) = L)(b’, Assign(b’) = 2)



Oblivious Multi-Array Shuffle  

Binin
i

Binout
i

(b, Assign(b) = 1) (b’’, Assign(b’’) = L) (b’’’, Assign(b’’’) = L)(b’, Assign(b’) = 2)

(b1, Assign(b1)) (b2, Assign(b2)) (bm-1, Assign(bm-1)) (bm, Assign(bm))

Sort by the value b



Bin Shuffle

(b1, Assign(b1)) (b2, Assign(b2)) (bm-1, Assign(bm-1)) (bm, Assign(bm))

Assign to positions bi in D non-obliviously

D

 b1
b2 bm-1 bm



Oblivious Multi-Array Shuffle  

Binin
1 Binin

2 Binin
m’

Binout
1 Binout

2 Binout
m’

A1 A2 AL

Bin Shuffle



Oblivious Multi-Array Shuffle  

Binin
1 Binin

2 Binin
m’

Binout
1 Binout

2 Binout
m’ Binout

mBinout
m’+1

A1 A2 AL

Total Leftover1 Total LeftoverL

Recurse

Bin Shuffle



Ball and Bins Model

● We can instantiate the PanORAMa construction in the model where GO’96 proved O(log N) lower 

bound
○ Server does no computation on the data ⇒ satisfy “balls and bins” requirement
○ GO’96  allows client to oracle access to private random function ⇒ replace PRF

● PanORAMa complexity: O(log N . log log N)



Follow-up Work



ORAM with Logarithmic Complexity

● OptORAMa: Optimal Oblivious RAM [AKLNPS18] (eprint 2018/892)
○ Communication complexity: O(log N)
○ Oblivious compaction: O(N)



Overview
● PanORAMa: new ORAM construction with 

improved asymptotic complexity
○ O(log N . log log N) for block size Ω(log N)

● New Efficient Building Blocks

○ Oblivious Hash Table
○ Oblivious Multi-Array Shuffle



Thanks!

Questions?

 


