

Evaluating the Security of Implementations Against Side Channel Attacks

Activities from ANSSI Laboratory for Embedded Security

Emmanuel Prouff

emmanuel.prouff@ssi.gouv.fr

Agence Nationale de la Sécurité des Systèmes d'Information

Summer School, Šibenik, Croatia – June, 17-21, 2019

ANSSI Core Missions

- Prevent **threats** by supporting the development of trusted products and services for Governmental entities and economic actors
- Provide reliable advice and support to Governmental entities and operators of Critical Infrastructure
- Keep companies and the general public informed about **information security threats** and the related means of protection through an active communication policy
- Give support to security evaluation labs (**ITSEF**) and to the french national certification center (**CCN**).

Certification Body

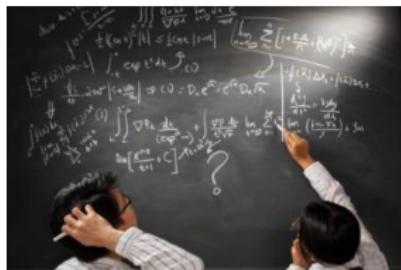
- Certification Body: 10 agents
- List of certified products available on the ANSSI website: www.ssi.gouv.fr
- Some statistics about french Common Criteria evaluations:
 - ▶ 50% smartcard evaluations
 - ▶ 35% microcontroller evaluations
 - ▶ 15% softwares, network, misc ...

Certification Labels for Security Products

- **CSPN** - certification for first level security *black-box*
 - ▶ fast and easy procedure (for ex. allow to label freewares)
 - ▶ evaluation made by ITSEFs
 - ▶ compliance with security target
 - ▶ efficiency of security functionalities
 - ▶ 25-35 man/day
- **Common Criteria** - CC certification *white-box*
 - ▶ longer procedure, recognized outside of France
 - ▶ evaluation made by ITSEFs
 - ▶ compliance with security target
 - ▶ eval. of each security functionality
 - ▶ different assurance levels: EAL1, ..., EAL7

Security Evaluation in the Industry

Context



- **Mandatory** for some security products (e.g. banking cards, ePassport or secure platforms for embedded systems)
- Not always **Mandatory** but **Economical Advantage** for many others (e.g. USIM or access control)
- **General Framework**
 - ▶ Developers implement countermeasures against SoA attacks (passive, semi-invasive or invasive)
 - ▶ Independent Labs evaluate the security w.r.t SoA attacks (e.g. listed by the JHAS group)
 - ▶ Certification authorities (e.g. ANSSI or BSI or EMV-CO) validate the evaluation and deliver the certificates.

Security Evaluation in the Industry

Facts

- Attacks are each year **more and more powerful**
 - ▶ Semi-invasive attacks with multiple faults
 - ▶ Template Attacks, Second-Order SCA or Horizontal SCA
 - ▶ Use of HPC
- ... each year **more numerous** ($\simeq 100$ publications / year)
- **Security is costly:** development/testing time, decreasing of the performances, loss of genericity for the codes, expertise cost
- How to **increase coverage and accuracy** of the evaluation while decreasing the cost?

Security Evaluation in the Industry

Some needs...

- **Automatize** evaluations without quality loss
- **Increase trust** in evaluation results
 - ▶ Failure due to countermeasures or to evaluator weakness?
- **Quantify** the security instead of testing a set of attacks
 - ▶ Too many attacks, too many parametrizations, etc.
 - ▶ Need to always stay up-to-date
 - ▶ Failure with 10^6 measurements but what if 10^7 are available?
- **Measure** the information leakage
 - ▶ Portability gain
 - ▶ Allow for comparison between evaluations
- **Identify** Points of Interest
 - ▶ Exchange "experts How-To" for sound and repeatable techniques

To sum-up: Estimate the efficiency of the most powerful attacks in a minimum of time.

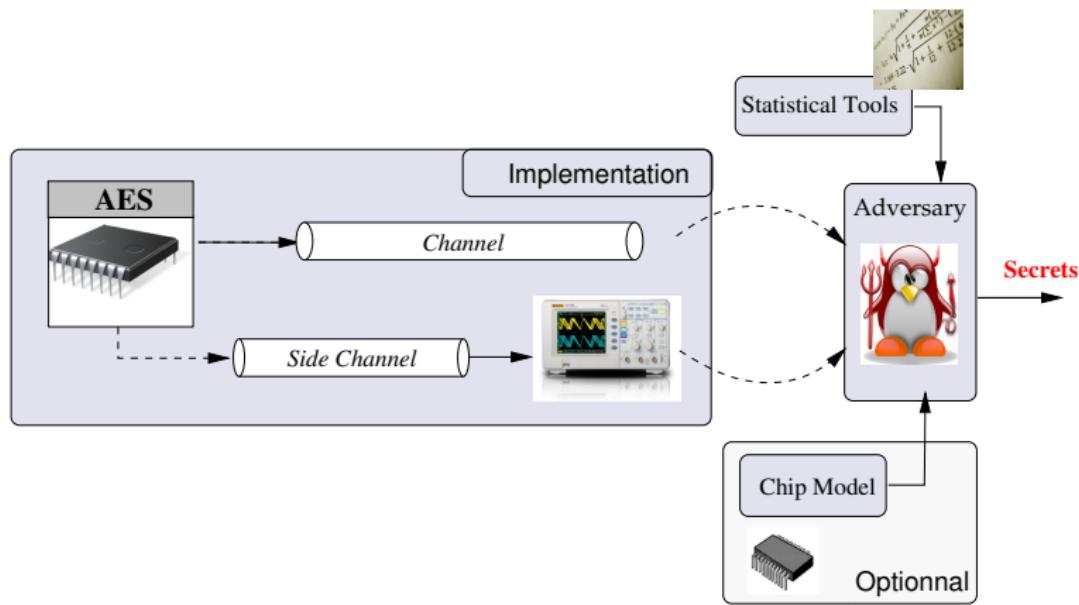
Security Evaluation in the Industry

Some needs...

- **Automatize** evaluations without quality loss
- **Increase trust** in evaluation results
 - ▶ Failure due to countermeasures or to evaluator weakness?
- **Quantify** the security instead of testing a set of attacks
 - ▶ Too many attacks, too many parametrizations, etc.
 - ▶ Need to always stay up-to-date
 - ▶ Failure with 10^6 measurements but what if 10^7 are available?
- **Measure** the information leakage
 - ▶ Portability gain
 - ▶ Allow for comparison between evaluations
- **Identify** Points of Interest
 - ▶ Exchange "experts How-To" for sound and repeatable techniques

To sum-up: Estimate the efficiency of the most powerful attacks in a minimum of time.

What we do at ANSSI related to these subjects?


Some Examples...

- Define generic frameworks to encompass most of the SoA attacks
- Use the latter frameworks to build generic and modular testing libraries
- Define methods to accurately measure the information leakage from a chip
- Define methods to evaluate the success rate of SoA attacks based on the latter measure
- Adapt methods from Machine Learning to identify PoL

Advanced Side Channel Attacks (DPA like attacks)

Side Channel Analysis: General Framework.

Advanced Side Channel Attacks

Side Channel Analysis: General Framework (Theoretical)

Context: attack during the manipulation of $S(X + k)$.

1 Measurement :

- ▶ get a leakages sample $(\ell_{k,i})_i$ related to a sample $(x_i)_i$ of plaintexts.

2 Model Selection :

- ▶ Design>Select a function $\mathbf{m}(\cdot)$.

3 Prediction :

- ▶ For every \hat{k} , compute $m_{\hat{k},i} = \mathbf{m}(S(x_i + \hat{k}))$.

4 Distinguisher Selection :

- ▶ Choose a statistical distinguisher Δ .

5 Key Discrimination :

- ▶ For every \hat{k} , compute the distinguishing value $\Delta_{\hat{k}}$:

$$\Delta_{\hat{k}} = \Delta \left((\ell_{k,i})_i, (m_{\hat{k},i})_i \right) .$$

6 Key Candidate Selection :

- ▶ Deduce \hat{k} from all the values $\Delta_{\hat{k}}$.

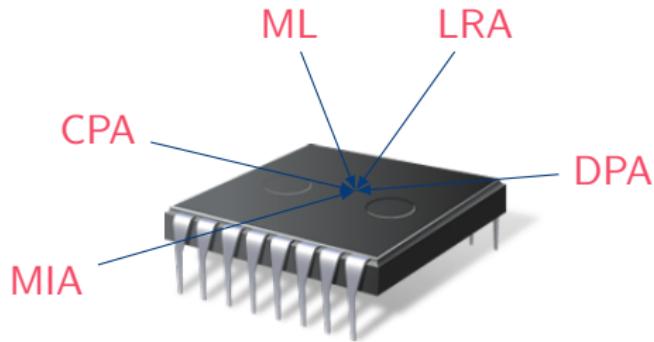
Advanced Side Channel Attacks

Side Channel Analysis: attack Description Sheet

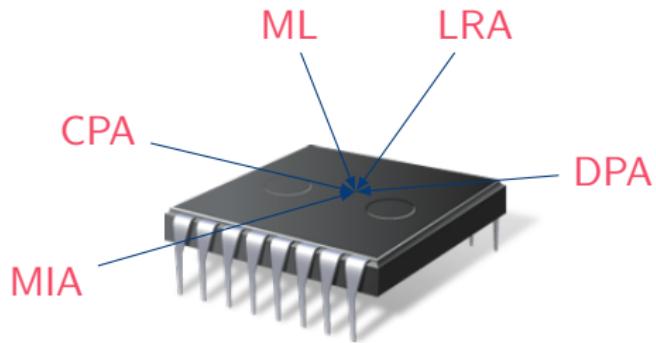
Attack Description Sheet

Type of Leakage: *e.g. power consumption or electromagnetic emanation*

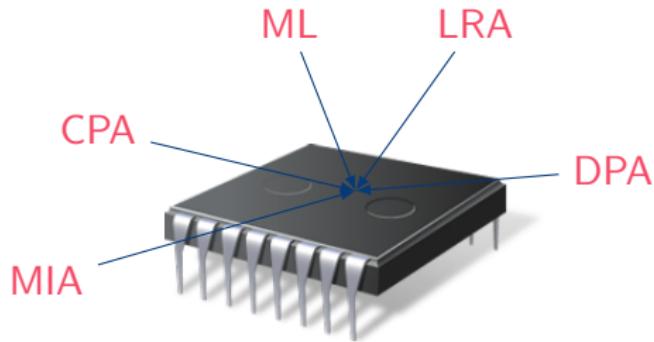
Model Function: *e.g. one bit of Z or its Hamming weight*


Statistical Distinguisher: *e.g. difference of means, correlation or entropy*

Key Candidate Selection: *e.g. the candidate the maximizes the scores*


A designer/evaluator POV

- Security of a device against SCA is tested by designers/evaluators.
- Large set of SCA to test: CPA, MIA, LRA, DPA, ML, etc.
- Little time, limited means, constrained resources.
- Strong knowledge of my device.


A designer/evaluator POV

- Security of a device against SCA is tested by designers/evaluators.
- Large set of SCA to test: CPA, MIA, LRA, DPA, ML, etc.
- Little time, limited means, constrained resources.
- Strong knowledge of my device.

A designer/evaluator POV

- Security of a device against SCA is tested by designers/evaluators.
- Large set of SCA to test: CPA, MIA, LRA, DPA, ML, etc.
- Little time, limited means, constrained resources.
- Strong knowledge of my device.

A designer/evaluator POV

- Security of a device against SCA is tested by designers/evaluators.
- Large set of SCA to test: CPA, MIA, LRA, DPA, ML, etc.
- Little time, limited means, constrained resources.
- Strong knowledge of my device.

Leakage assessment: is there information in the traces?

- must be very efficient in the number of traces.
- must be as generic as possible: any kind information must be revealed.
 - independent from leakage functions.
 - takes into account as many intermediate variables as possible.

Intuitions

- First focus on first-order leakages, *i.e.* the information is contained in the conditional mean of the traces.

$$E[T \mid Z = z] \neq E[T]$$

- A secure implementation would behave as manipulating random values.

Test Vector Leakage Assessment (TVLA) [Becker *et al.* White Paper CRI]

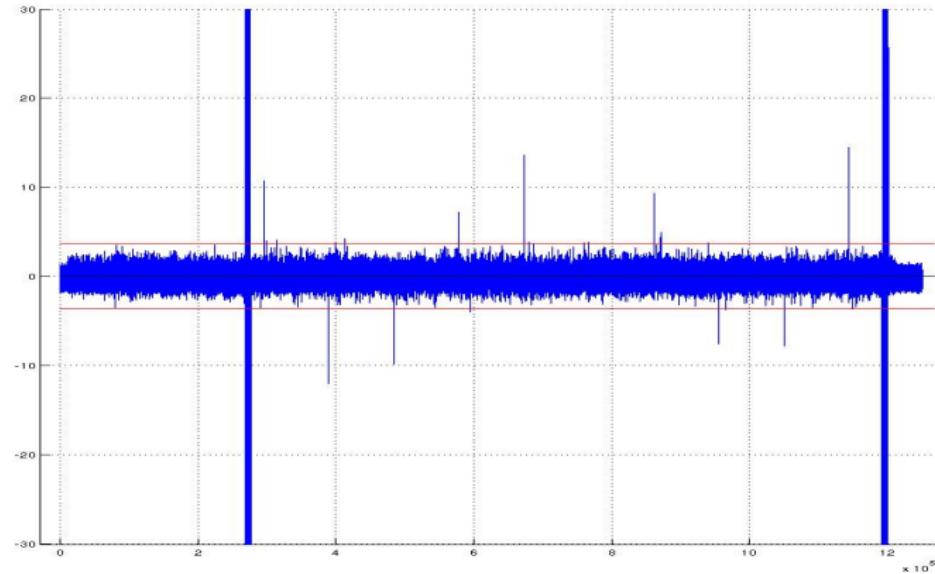
Acquire some sets of traces:

- S_1 : Plaintexts and Keys are both fixed to well chosen values.
- S_2 : Plaintexts are randomly chosen and Keys are fixed.
- S_3 : Plaintexts are fixed and Keys are randomly chosen.
- ...

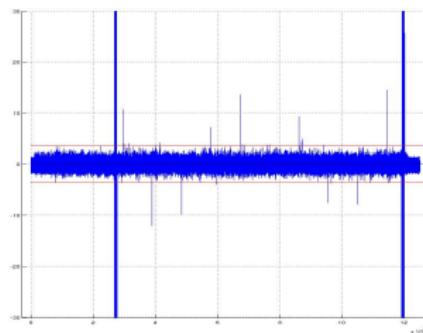
Welch t-test

- between S_i and S_1 compute , for each time sample t ,

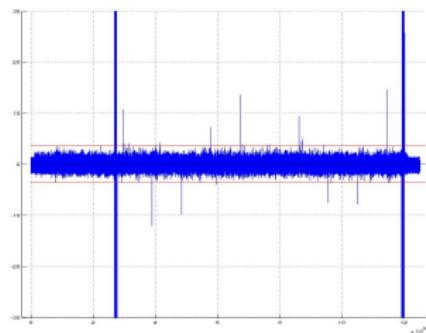
$$score(t) = \frac{\hat{E}[S_i] - \hat{E}[S_1]}{\sqrt{\left(\frac{\hat{V}[S_i]}{N_i} + \frac{\hat{V}[S_1]}{N_1}\right)}}$$


where \hat{E} and \hat{V} are estimations of the mean and of the variance respectively.

- if $score(t) > \text{threshold}$ then there is a leakage...


An example on AES implem. (8-bit ATMega)

200000 observations, Random plaintexts vs. Fixed Set.
threshold = $4.5\text{std(score)} + \text{mean}$.


TVLA output...

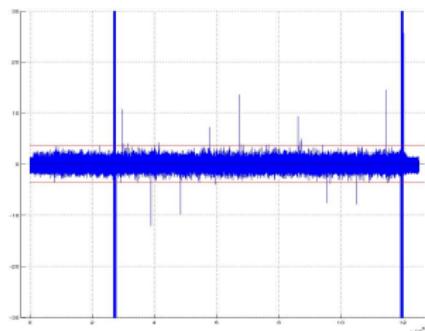
There are first-order leakages!

TVLA output...

There are first-order leakages!
But which sensitive value is leaking?

TVLA output...

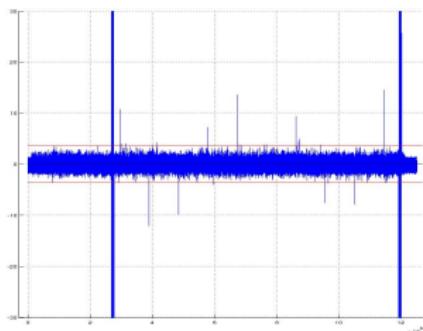
There are first-order leakages!
But which sensitive value is leaking?



- + There is some first-order leakages and their time samples.
 - These leakages may not be sensitive... \hookrightarrow use S_3
 - These leakages may depend on sensitive values in any ways:
 - ▶ several bytes of plaintext/key may be involved.
 - ▶ relationship between these leakages and intermediate variables may be tricky.

TVLA output...

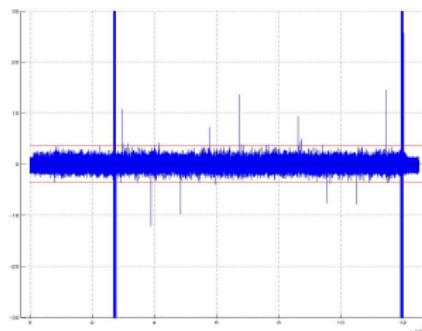
There are first-order leakages!
But which sensitive value is leaking?



- + There is some first-order leakages and their time samples.
- These leakages may not be sensitive... ↪ use S_3
- These leakages may depend on sensitive values in any ways:
 - ▶ several bytes of plaintext/key may be involved.
 - ▶ relationship between these leakages and intermediate variables may be tricky.

TVLA output...

There are first-order leakages!
But which sensitive value is leaking?

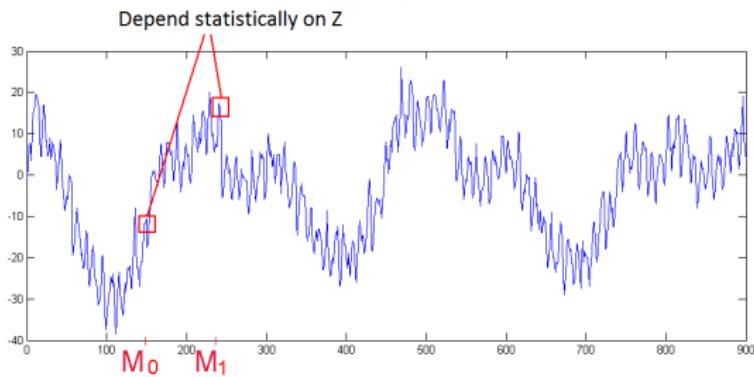


- + There is some first-order leakages and their time samples.
 - These leakages may not be sensitive... ↪ use S_3
 - These leakages may depend on sensitive values in any ways:
 - ▶ several bytes of plaintext/key may be involved.
 - ▶ relationship between these leakages and intermediate variables may be tricky.

TVLA output...

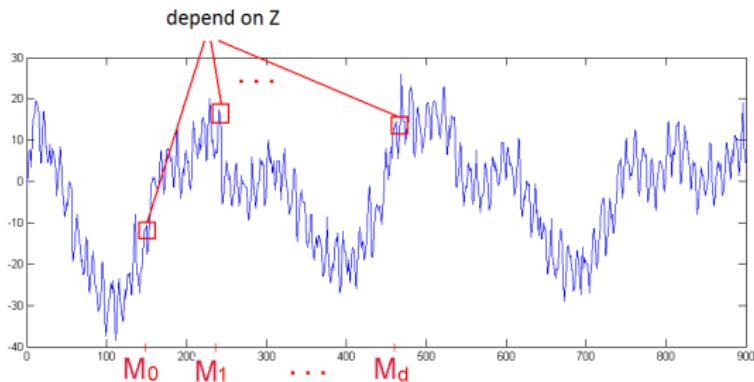
There are first-order leakages!
But which sensitive value is leaking?

Find strategies to identify the plaintext/key bytes involved


- minimize the number of subsequent acquisition campaigns.
- use generic tools to observe leakages: T-test, SNR, etc...

Higher Order Side Channel Attacks

Core Principle


- First Order Masking: $M_0 = Z \oplus M_1$
- \implies Second Order SCA:

Higher Order Side Channel Attacks

Core Principle

- Masking of order d : $M_0 = Z \oplus M_1 \oplus \dots \oplus M_d$
- Attack of order $d + 1$:

Higher-Order SCA

Context: attack during the manipulation of s_0, s_1, \dots, s_d with $S(\mathbf{x} + \mathbf{k}) = \sum_{i=0}^d m_i$.

1 Measurement :

- ▶ get a leakages sample $(\vec{\ell}_{k,i})_i$ related to a sample $(\mathbf{x}_i)_i$ of plaintexts.

2 Pre-processing and Model Selection :

- ▶ Select a combination function $\mathbf{f}(\vec{\ell})$, Design/Select a function $\mathbf{m}(s)$.

3 Prediction :

- ▶ For every \hat{k} , compute $m_{\hat{k},i} = \mathbf{m}(S(\mathbf{x}_i + \hat{k}))$.

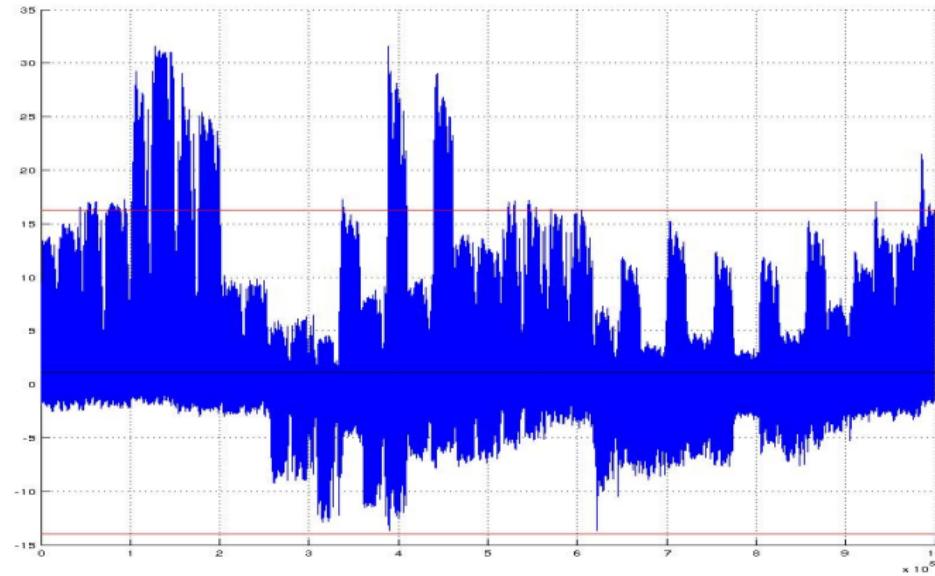
4 Distinguisher Selection :

- ▶ Choose a statistical distinguisher Δ .

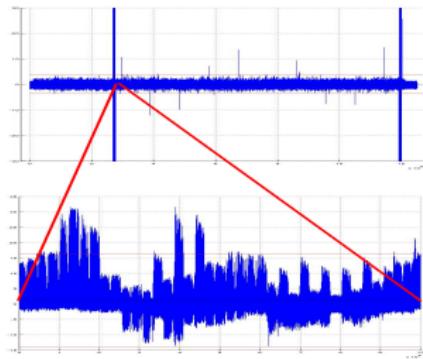
5 Key Discrimination :

- ▶ For every \hat{k} , compute the distinguishing value $\Delta_{\hat{k}}$:

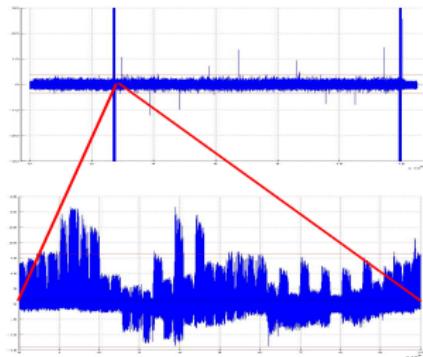
$$\Delta_{\hat{k}} = \Delta \left((\mathbf{f}(\vec{\ell}_{k,i}))_i, (m_{\hat{k},i})_i \right) .$$


6 Key Candidate Selection :

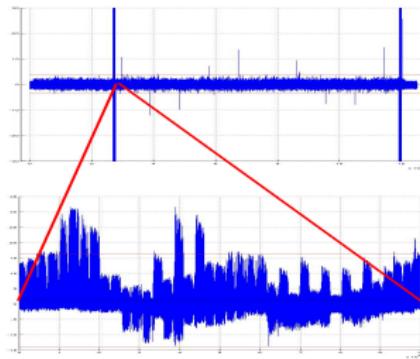
- ▶ Deduce \hat{k} from all the values $\Delta_{\hat{k}}$.


An example on AES implem. (8-bit ATMega)

200000 observations, Random plaintexts vs. Fixed Set.
Combination function: Centered product.


TVLA 2nd-order output...

There are second-order leakages!

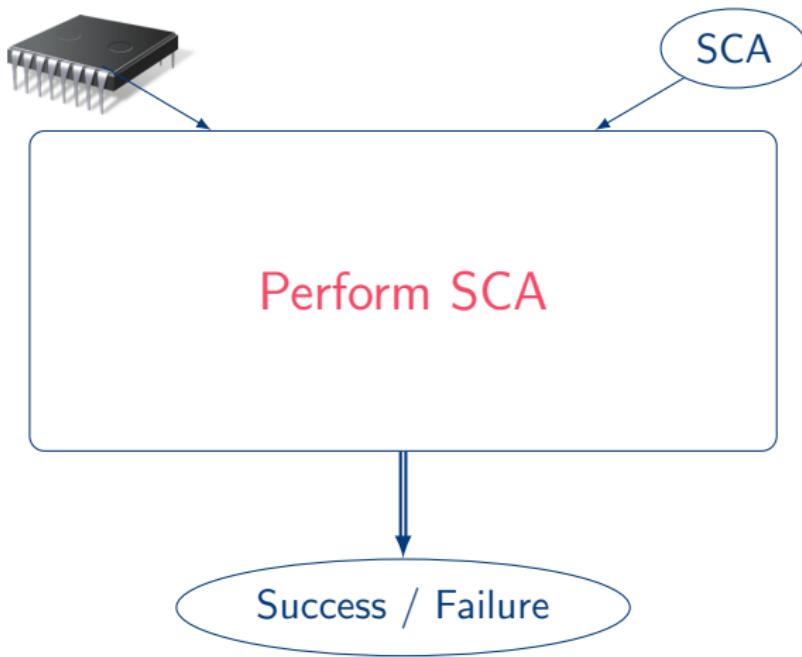

TVLA 2nd-order output...

There are second-order leakages!
The trace sizes are squared...

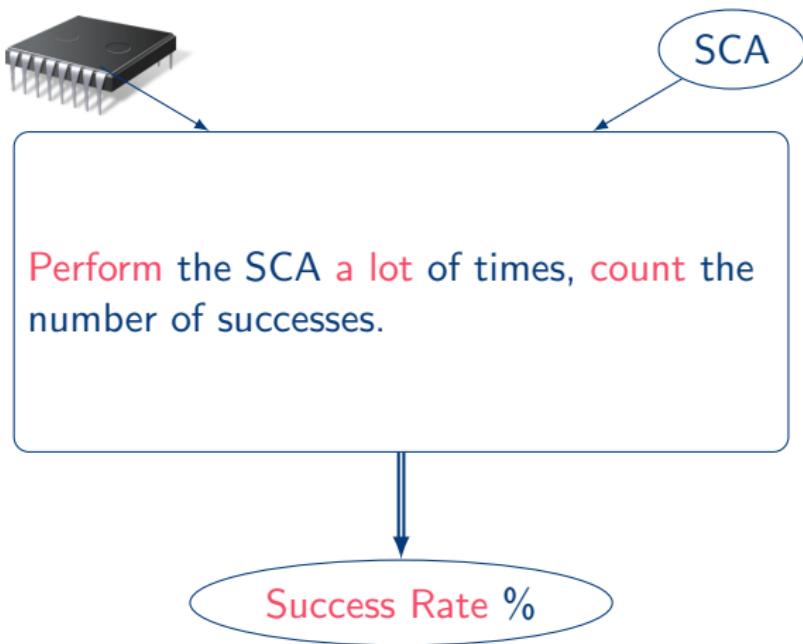
TVLA 2nd-order output...

There are second-order leakages!
The trace sizes are squared...

- + The centred product + TVLA allow to identify second order leakages.
- The treatment complexity increases exponentially with the order.
- The number of traces increases exponentially with the order.


Open Issues with TVLA

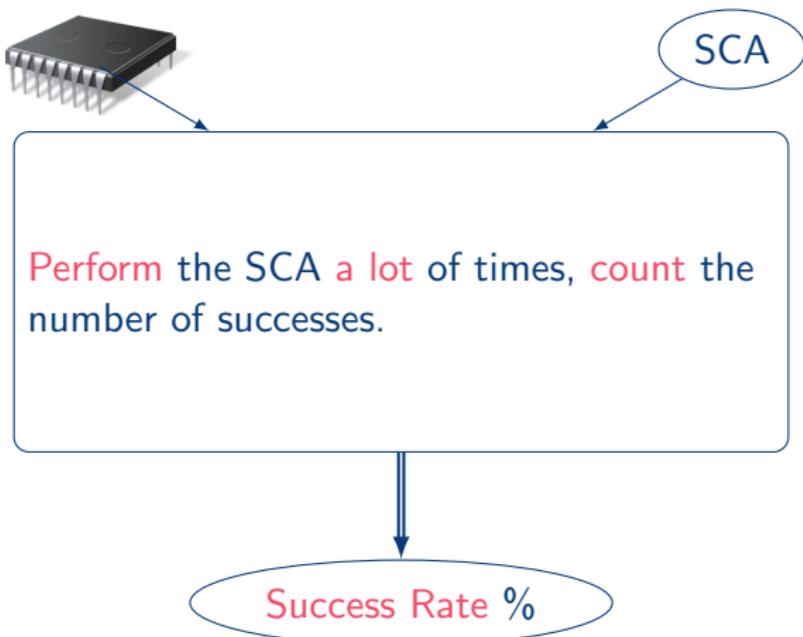
- Difficulty to deal with **false positives**: how to specify efficient and smart acquisition campaigns?
- Adversary may be considered **too strong** for some contexts: e.g. knowledge of the masking material, ability to profile the device, etc. Is it an issue? How to deal with it?
- Relation between SNR peaks amplitude and **attacks efficiency**.


Security of a device: practice

Problem: Is my device **secure** against an attack ?

Security of a device: much better

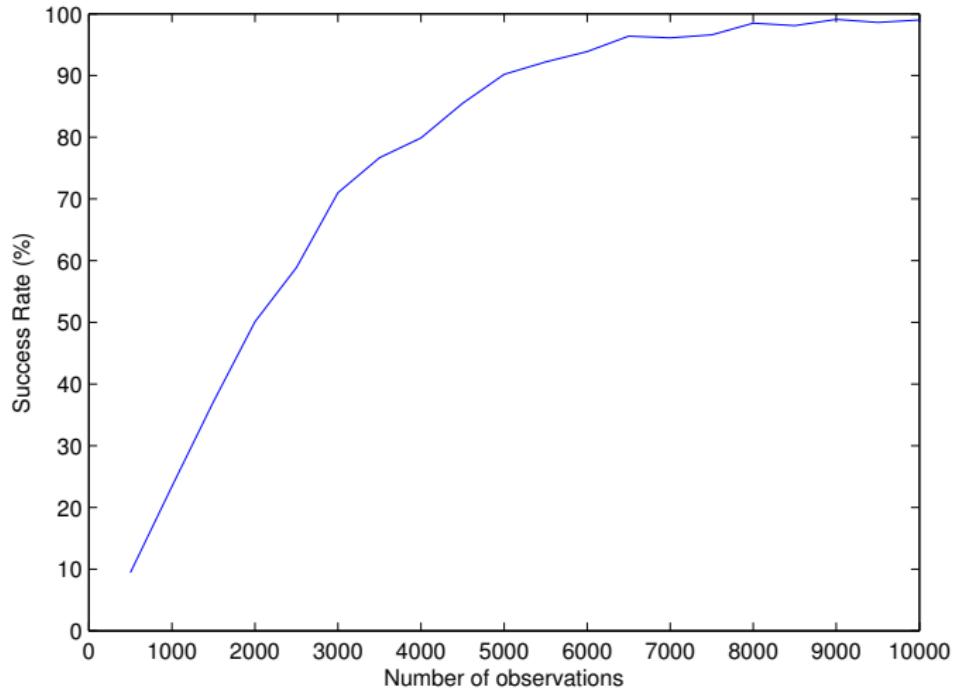
Problem: Is my device **secure** against an attack ?



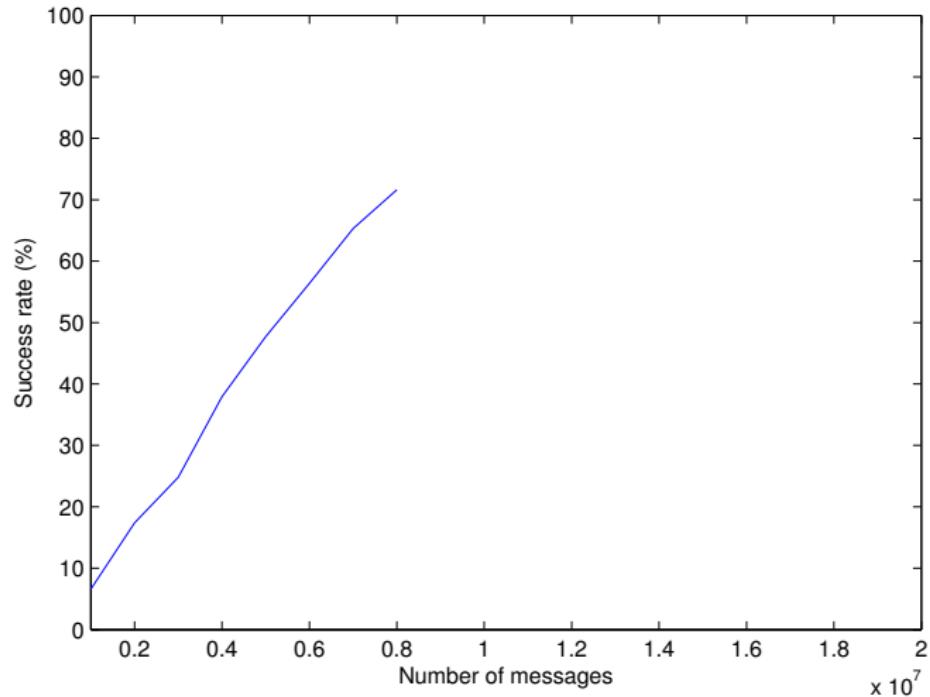
Issue: Might be too **expensive** (acquisitions, computations ...).

Security of a device: much better

Problem: Is my device **secure** against an attack ?



Issue: Might be too **expensive** (acquisitions, computations ...).


An example : 20-CPA

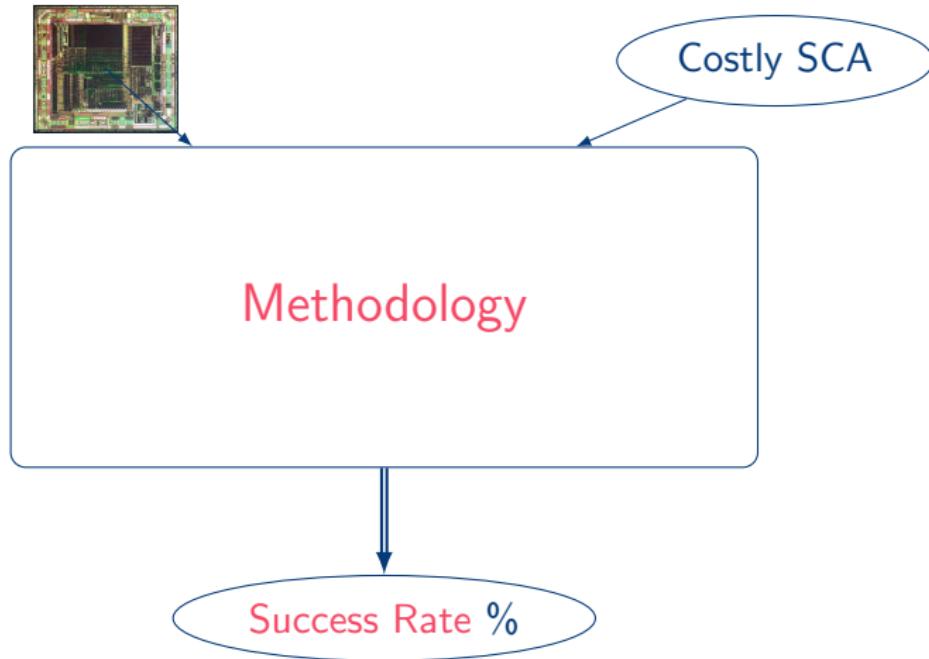
$1000 \times 10000 = 10$ Millions of observations.

An example : 40-CPA

$1000 \times 10^7 = 10$ Billions of observations.

Knowledge of the device

- The designer/evaluator has a **strong knowledge** of the device:
 - ▶ Leakage functions.
 - ▶ Noises distributions.
 - ▶ ...
- Total control over inputs:
 - ▶ Plaintext.
 - ▶ Key.
 - ▶ Randoms.



credit: ZeptoBars

Security of a device: designer

Problem: Is my device **secure** against an attack ?

PCD Methodology

Outlines:

- 1 **Profile** the device parameters.
- 2 **Compute** some formulas using these parameters.
- 3 **Deduce** the success rate.

Purpose:

- Work for any additive distinguisher st. DPA, CPA, Maximum Likelihood, etc.
- Generalize to HO versions.
- Enable to clearly identify the impact of each device's parameter on its security.

PCD Methodology

Outlines:

- 1 **Profile** the device parameters.
- 2 **Compute** some formulas using these parameters.
- 3 **Deduce** the success rate.

Purpose:

- Work for any additive distinguisher st. DPA, CPA, Maximum Likelihood, etc.
- Generalize to HO versions.
- Enable to clearly identify the impact of each device's parameter on its security.

PCD Methodology

Outlines:

- 1 **Profile** the device parameters.
- 2 **Compute** some formulas using these parameters.
- 3 **Deduce** the success rate.

Purpose:

- Work for any **additive distinguisher** st. DPA, CPA, Maximum Likelihood, etc.
- Generalize to HO versions.
- Enable to clearly identify the impact of each device's **parameter** on its security.

Distribution of the Scores Vector

Score vector

Vector of scores given by the SCA (when targeting 8-bit secrets)

$$\vec{d} = (d_{k_0}, d_{k_1}, \dots, d_{k_{255}})$$

Comparison vector

Vector of differences of scores between k^* and k .

$$\vec{c} = (d_{k^*} - d_{k_0}, d_{k^*} - d_{k_1}, \dots, d_{k^*} - d_{k_{255}})$$

Attack success $\Leftrightarrow \vec{c} > \vec{0}$.

$$SR = P[\vec{c} > \vec{0}].$$

Distribution of the Scores Vector

Score vector

Vector of scores given by the SCA (when targeting 8-bit secrets)

$$\vec{d} = (d_{k_0}, d_{k_1}, \dots, d_{k_{255}})$$

Comparison vector

Vector of differences of scores between k^* and k .

$$\vec{c} = (d_{k^*} - d_{k_0}, d_{k^*} - d_{k_1}, \dots, d_{k^*} - d_{k_{255}})$$

Attack **success** $\Leftrightarrow \vec{c} > \vec{0}$.

$$SR = P[\vec{c} > \vec{0}].$$

Distribution of the Scores Vector

Distribution of score vector

- # observations $\rightarrow \infty \implies \vec{d} \sim \mathcal{N}(m_d, \Sigma_d)$ (mCLT).
- m_d, Σ_d can be computed/deduced from leakage profiling
 - ▶ even when masking material is unknown (by averaging the combining of leakage points)!

Distribution of comparison vector

- # observations $\rightarrow \vec{c} \sim \mathcal{N}(m_c, \Sigma_c)$ (mCLT).
- m_c, Σ_c can be computed/deduced from leakage profiling

$$SR = P[\vec{c} > \vec{0}] = \Phi_{m_c, \Sigma_c}(\vec{0}, \vec{\infty}).$$

Distribution of the Scores Vector

Distribution of score vector

- # observations $\rightarrow \infty \implies \vec{d} \sim \mathcal{N}(m_d, \Sigma_d)$ (mCLT).
- m_d, Σ_d can be computed/deduced from leakage profiling
 - ▶ even when masking material is unknown (by averaging the combining of leakage points)!

Distribution of comparison vector

- # observations $\rightarrow \vec{c} \sim \mathcal{N}(m_c, \Sigma_c)$ (mCLT).
- m_c, Σ_c can be computed/deduced from leakage profiling

$$SR = P[\vec{c} > \vec{0}] = \Phi_{m_c, \Sigma_c}(\vec{0}, \vec{\infty}).$$

Evaluation of SR: PCD Methodology

- 1 **Profile** the leakage of every share.
- 2 **Compute** the parameters m_d and Σ_d of the score vector.
- 3 **Deduce** the parameters m_c and Σ_c and evaluate the success rate thanks to the multivariate normal cdf.

Evaluation of SR: PCD Methodology

- 1 **Profile** the leakage of every share.
- 2 **Compute** the parameters m_d and Σ_d of the score vector.
- 3 **Deduce** the parameters m_c and Σ_c and evaluate the success rate thanks to the multivariate normal cdf.

Evaluation of SR: PCD Methodology

- 1 **Profile** the leakage of every share.
- 2 **Compute** the parameters m_d and Σ_d of the score vector.
- 3 **Deduce** the parameters m_c and Σ_c and evaluate the success rate thanks to the multivariate normal cdf.

Evaluation of SR: PCD Methodology

- 1 **Profile** the leakage of every share.
- 2 **Compute** the parameters m_d and Σ_d of the score vector.
- 3 **Deduce** the parameters m_c and Σ_c and evaluate the success rate thanks to the multivariate normal cdf.

Validation of the approach

Context

- Two 'real life' devices: 130nm and 350nm architectures.
- Masked AES, output of S-box.
- EM radiations.

Methodology

- Estimation of leakage parameters using linear regression techniques on 200.000 samples.
- HO-CPAs using normalized product combination function, and HW model function.

Validation of the approach

Context

- Two 'real life' devices: 130nm and 350nm architectures.
- Masked AES, output of S-box.
- EM radiations.

Methodology

- Estimation of leakage parameters using linear regression techniques on 200.000 samples.
- HO-CPAs using normalized product combination function, and HW model function.

Results

Figure: 130nm, 20CPA

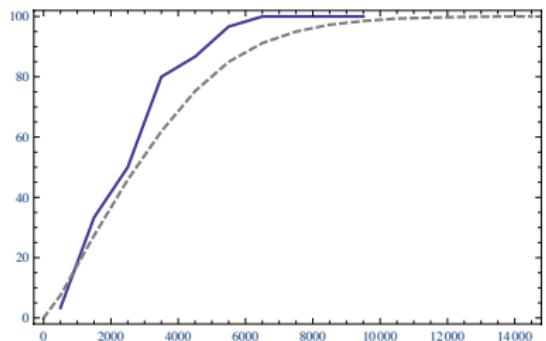


Figure: 350 nm, 30CPA

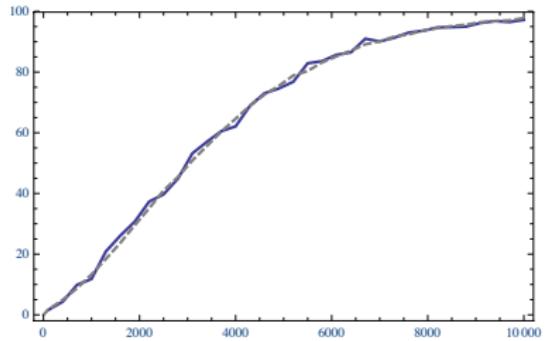
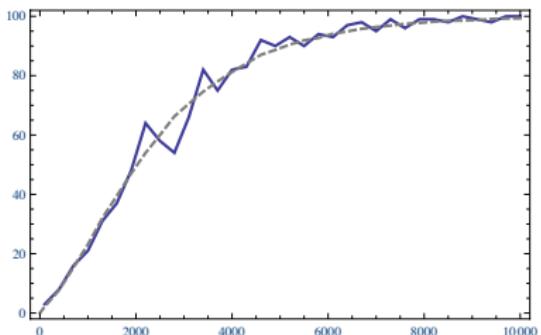
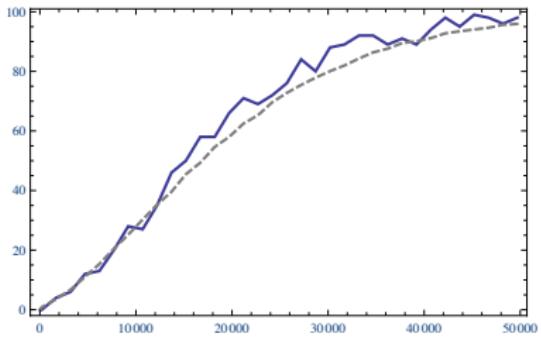
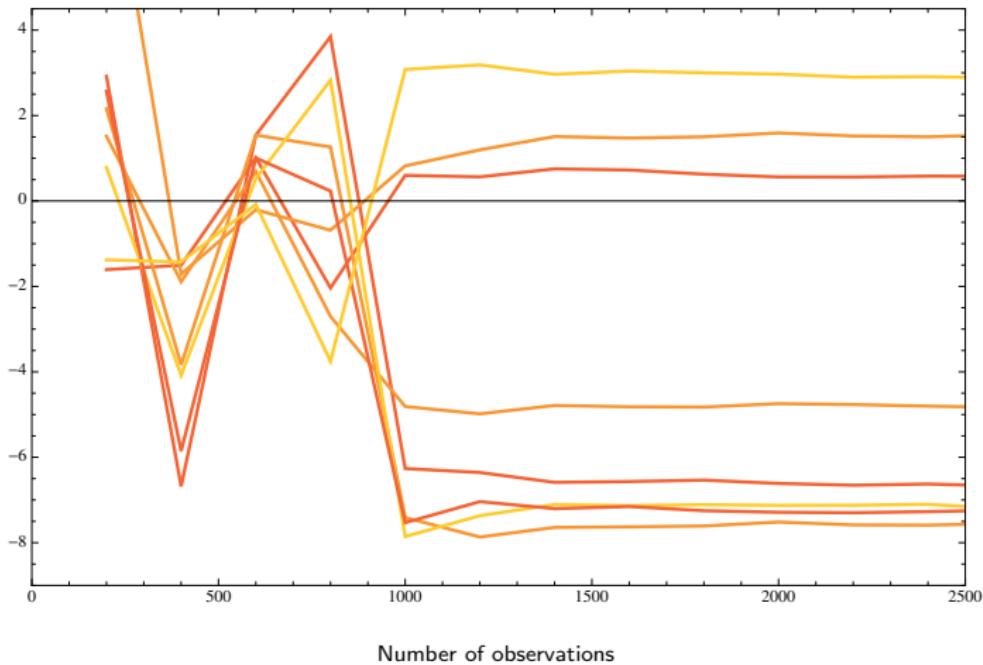
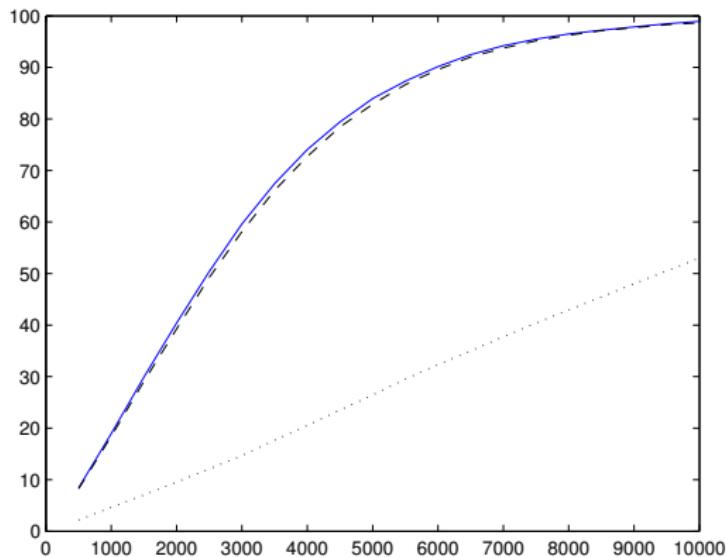


Figure: 350nm, 20CPA


Figure: 350 nm, 40CPA

Impact of leakage profiling

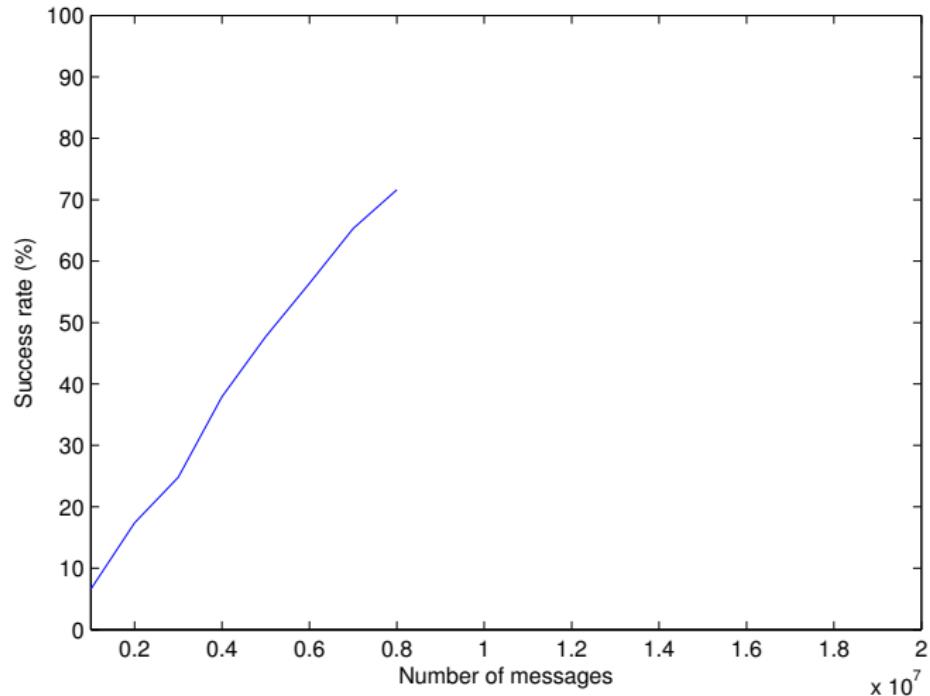

What happens when we regress/profile with less samples ?

$$\text{Leak}(X) = c_0 + c_1 X_1 + c_2 X_2 + c_3 X_3 + c_4 X_4 + c_5 X_5 + c_6 X_6 + c_7 X_7 + \text{Noise}$$

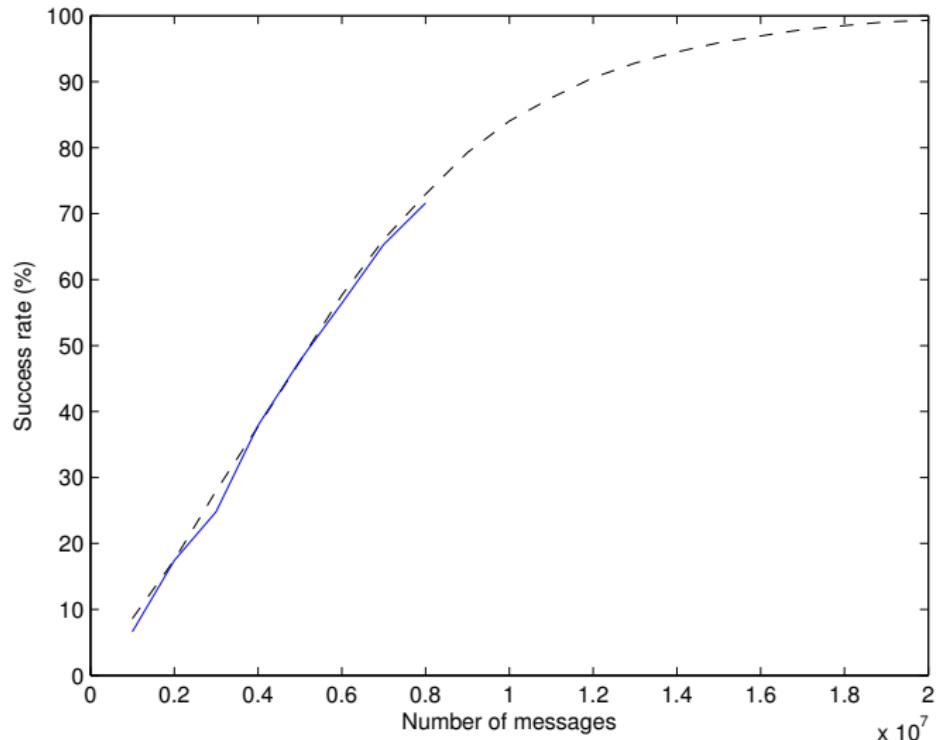
Results

Figure: 350 nm, 2OCPA

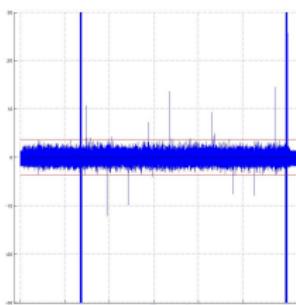
Conclusion: 1500 samples are **enough** to accurately assess the efficiency of this attack (instead of 10 Millions !).


Increasing the order

- Number of observations: **constant** (instead of exponential).
- Number of operations: **linear** (instead of exponential).

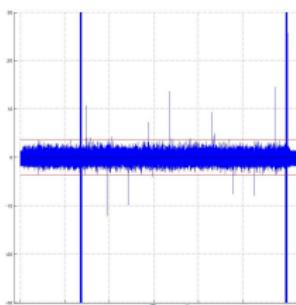

What about our 40-CPA ?

$1000 \times 10^7 = 10$ Billions of observations.

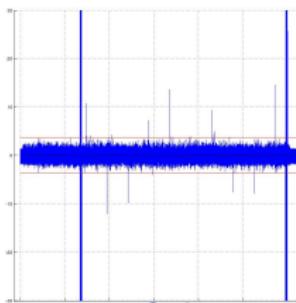


What about our 40-CPA ?

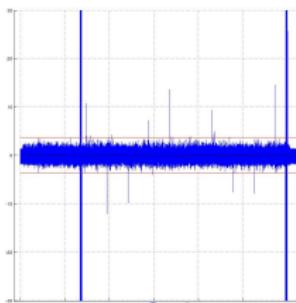
15 hundreds of observations.


Conclusion about SR and Profiling

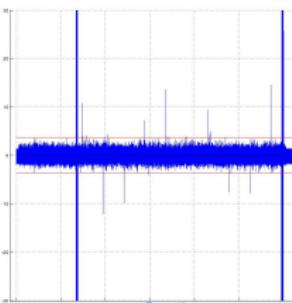
- From good leakage assessment, the success rates of the main side-channel attacks can be deduced.
 - ▶ Do we still need to perform the attacks?
- Formulas moreover indicate the impact of device's parameters on the SR.
 - ▶ Related to recent works by Bruneau, Heuser, Guilley and Rioul.
- Possibility to precisely know the SR of attacks requiring a lot of observations, using only a very limited number of acquisitions!
- Open an important issue: specify sound campaigns to compute SNR that can be easily related to information leakage.


Conclusion about SR and Profiling

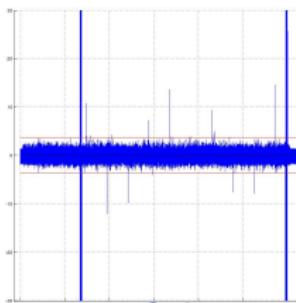
- From good leakage assessment, the success rates of the main side-channel attacks can be deduced.
 - ▶ Do we still need to perform the attacks?
- Formulas moreover indicate the impact of device's parameters on the SR.
 - ▶ Related to recent works by Bruneau, Heuser, Guilley and Rioul.
- Possibility to precisely know the SR of attacks requiring a lot of observations, using only a very limited number of acquisitions!
- Open an important issue: specify sound campaigns to compute SNR that can be easily related to information leakage.


Conclusion about SR and Profiling

- From good leakage assessment, the success rates of the main side-channel attacks can be deduced.
 - ▶ Do we still need to perform the attacks?
- Formulas moreover indicate the impact of device's parameters on the SR.
 - ▶ Related to recent works by Bruneau, Heuser, Guilley and Rioul.
- Possibility to precisely know the SR of attacks requiring a lot of observations, using only a very limited number of acquisitions!
- Open an important issue: specify sound campaigns to compute SNR that can be easily related to information leakage.

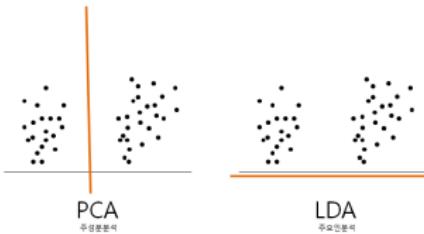

Conclusion about SR and Profiling

- From good leakage assessment, the success rates of the main side-channel attacks can be deduced.
 - ▶ Do we still need to perform the attacks?
- Formulas moreover indicate the impact of device's parameters on the SR.
 - ▶ Related to recent works by Bruneau, Heuser, Guilley and Rioul.
- Possibility to precisely know the SR of attacks requiring a lot of observations, using only a very limited number of acquisitions!
- Open an important issue: specify sound campaigns to compute SNR that can be easily related to information leakage.


Conclusion about SR and Profiling

- From good leakage assessment, the success rates of the main side-channel attacks can be deduced.
 - ▶ Do we still need to perform the attacks?
- Formulas moreover indicate the impact of device's parameters on the SR.
 - ▶ Related to recent works by Bruneau, Heuser, Guilley and Rioul.
- Possibility to precisely know the SR of attacks requiring a lot of observations, using only a very limited number of acquisitions!
- Open an important issue: specify sound campaigns to compute SNR that can be easily related to information leakage.

Conclusion about SR and Profiling



- From good leakage assessment, the success rates of the main side-channel attacks can be deduced.
 - ▶ Do we still need to perform the attacks?
- Formulas moreover indicate the impact of device's parameters on the SR.
 - ▶ Related to recent works by Bruneau, Heuser, Guilley and Rioul.
- Possibility to precisely know the SR of attacks requiring a lot of observations, using only a very limited number of acquisitions!
- Open an important issue: specify sound campaigns to compute SNR that can be easily related to information leakage.

Machine Learning and Pol

Some Open Issues

- Sound choice among the first components returned by Principal Component Analysis (PCA) or Linear Discriminant analysis
 - ▶ maximizing intra/inter class variances is not equivalent to maximizing information leakage!
- Combine use of Kernel functions with PCA/LDA to get efficient methods to identify Pol (or tuples of Pol against masked implementations)
- Compare PCA/LDA + Kernel functions with recent methods based on Projection Pursuits.

Conclusion

- Leakage assessment is a sound alternative to the "attacks testing" approach (at least for designers/developers)
- Profiling + leakage assessment enables to soundly estimate the efficiency of the main SCA
- Machine Learning provides us with many tools to answer our questions (key extraction, dimension reduction,) BUT adaptations and further studies are needed!
- Genericity and automation is our Graal
 - ▶ it does not go against human expertise, it helps to identify the central problems!

Acknowledgement: part of the slides come from presentations given by Eleonora Cagli, Thomas Roche, Adrian Thillard

