Group Signatures Concepts, Applications*, and new Advances**

Anja Lehmann IBM Research – Zurich

*Zone Encryption with Anonymous Authentication for V2V Communication. J Camenisch, M Drijver, A Lehmann, G Neven, P Towa

**Group Signatures with Selective Linkability. PKC 2019 L Garms, A Lehmann

Roadmap

- Introduction to Group Signatures
 - Setting & Security Properties
 - Schemes
 - Similar Concepts
 - Anonymous Credentials
 - Direct Anonymous Attestation (DAA)
 - Enhanced Privacy ID (EPID)
- Group Signatures & V2X Communication
- Group Signatures with Selected Linkability for V2Cloud

Standard Signatures

- Security property: unforgeability
- Important primitive for strong authentication:
 - Server-side authentication, certified updates, eID cards,
- Bad for privacy "leaks" the identity of the signer
 - Membership based online newsportal, vehicle-to-vehicle (V2V) communication, IoT,...

Group Signatures | Naive Approach

- Privacy

 Doesn't leak any information about signer
- Security : Access to "group" not controlled

No way to reveal signer in case of abuse (bug or feature?)

- Static vs dynamic groups
- Issuer = opener vs dedicated opener
- Verifiable Opening

- Signatures don't leak info about signer
 Unlinkability of signatures
- Full/CCA anonymity: access to Opener

Group Signatures | Unforgeability (Naïve Approach)

Group Signatures | Unforgeability

Group Signatures | Unforgeability (Traceability)

Group Signatures | Security Properties

Bellare, Shi, Zhang, '05

	Anonymity	Traceability	Non- Frameability
Issuer	Corrupt*	Honest	Corrupt**
Opener	Honest	Corrupt*	Corrupt

- *Only when Issuer ≠ Opener
- ** Only for **dynamic** group signatures. Issuer honest in static ones.
- Traceability + Non-frameability = unforgeability

$SIG.KGen(1^{\tau}) \rightarrow ssk, spk$

ENC. KGen $(1^{\tau}) \rightarrow esk, epk$ SIG. KGen $(1^{\tau}) \rightarrow ssk, spk$

$$\frac{m, \sigma = (\pi, C)}{upk = Dec(esk, C)} \rightarrow OPEN$$

 Traceability: Unforgeability of SIG & Soundness of NIZK

Bellare, Micciancio, Warinschi'03

- Sign & Encrypt & Prove most common approach, mainly differ in signature scheme
 - Signatures on committed messages cred = Sign(isk,upk) = "Sign(isk,usk)"
 - Efficient proofs of knowledge of a signature
 - Instantiations: CL'01 (strong RSA), CL'04 (LRSW), BBS'04 (q-SDH), PS'16 (q-MSDH-1)
- Opening flexible: verifiable decryption, threshold decryption
- Disadvantage: opening increases signature size, yet is hardly needed
- More compact group signatures: GetShorty (Bichsel et al, SCN'10)
 - Join creates user-specific opening secret at Issuer/Opener
 - To open, Issuer/Opener iterates through all opening secrets & test against signature
 - Disadvantage:
 - Opening gets very expensive (feature?)
 - Issuer = Opener (inherently weaker security guarantees)

Roadmap

- Introduction to Group Signatures
 - Setting & Security Properties
 - Schemes
 - Similar Concepts
 - Anonymous Credentials
 - Direct Anonymous Attestation (DAA)
 - Enhanced Privacy ID (EPID)

Group Signatures & V2X Communication

Group Signatures with Selected Linkability for V2Cloud

Anonymous Credentials

Envisioned by Chaum in 1981, first full scheme by Camenisch & Lysyanskaya in 2001

Anonymous Credentials

Membership credentials contain user attributes

- User can selectively disclose each attribute
- User can prove predicates over the attributes, e.g., "I'm over 18"
- Revocation of credentials (issuer/verifier-driven)
- User-controlled linkability via pseudonyms
 → Unlinkable authentication as default, linkability as an option
- Construction very similar to group signatures (CL/BBS/PS-based)

Direct Anonymous Attestation (DAA)

- Hardware-based attestation using a Trusted Platform Module (TPM)
 - Secure crypto processor creates, stores, uses cryptographic keys
 - Makes anonymous remote attestations of host status
- Split between host & TPM → shift heavy computations to host
- Unlinkability steered via "basename" and pseudonyms. No Opener.

Direct Anonymous Attestation (DAA)

- Standardized in TPM1.2 (2004) & ISO/IEC 20008-2
 - RSA-based by Brickell, Camenisch, Chen
 - Developed for Trusted Computing Group (TCG) = industry group that standardizes TPM
- Revised TPM2.0 (2014)
 - Elliptic curve & pairing based
 - Flexible API to support different protocols
 - TPM part & protocols ISO standardized
- Over 500 million TPMs sold

- Standardized DAA has a number of security issues
 - All security models & schemes had issues (ISO scheme is trivially forgeable) [CDL16a, CDL16b]
 - TPM interfaces had inherent security problems [CCD+17]
 - TPM assumed fully trusted. Subversion-resilient DAA [CDL17]

Enhanced Privacy ID (EPID)

- DAA-variant used for attestation on Intel's SGX
 - Without host/TPM split
 - Signature-based revocation
- DAA (and credentials) support key-based revocation:

Comparison

	Group Signature	Credentials	DAA	EPID
Opener				
Pseudonyms				
Attributes				
Revocation			Key-based	Signature-based
TPM Anchor				All on TPM

Comparison

	Group Signature	Credentials	DAA	EPID
Opener				
Pseudonyms				
Attributes				
Revocation			Key-based	Signature-based
TPM Anchor				All on TPM

- Opener vs. pseudonyms has not only impact on privacy but also on unforgeability
- Every new combination of features requires new security model
- Attributes: can encode validity, i.e., make creds short-lived = alternative to revocation

Comparison

Roadmap

Introduction to Group Signatures

- Setting & Security Properties
- Schemes
- Similar Concepts
 - Anonymous Credentials
 - Direct Anonymous Attestation (DAA)
 - Enhanced Privacy ID (EPID)

Group Signatures & V2X Communication

Group Signatures with Selected Linkability for V2Cloud

Vehicle-to-Vehicle (V2V) Authentication

- Short-range radio communication between vehicles (V2V) and infrastructure (V2I)
 - position, speed,... for collision avoidance, road & traffic conditions
 - first roll-out in 2019(?), expected mandatory in new vehicles in near future
- Requirements:
 - security: authenticate real vehicles to exclude attacker trying to disrupt traffic
 - privacy: cannot track vehicles by unique identifiers in radio messages
- V2V/V2I (=V2X)
 - low communication bandwidth (300 Bytes max)
 - high message frequency
 - (1-10 msg/vehicle/second)

CA

Current C-ITS Security Architecture

- C-ITS: Cooperative Intelligent Transport Systems
 - Standardization in CEN and ETSI
- C-ITS Platform established by European Commission in 2014
 - Cooperative framework incl. national authorities, C-ITS stakeholders and the Commission
 - Develop a shared vision on the interoperable deployment of C-ITS in the EU

Current C-ITS Security Architecture with Pseudonym CA

- Vehicles receive short-term pseudonym certificates (100/week), switch every 5min
- Authenticate messages via pseudonym certificates

Neither optimal for privacy nor security:

- Pseudonym CA is security/privacy bottleneck & expensive to maintain
- High storage costs for vehicles
- Limited pool of pseudonyms

Group Sigs/Credentials: Optimal Privacy and Security

- Different key ("credential") in each vehicle, can be individually revoked
 - Offline authority (or multiple) can de-anonymize signatures
- privacy

security

- Vehicles can locally self-certify pseudonyms
 - no server interaction needed
 - optionally limit number of pseudonyms per vehicle/day/...

Long-term CA

Group Sigs/Credentials: Optimal Privacy and Security

- Different key ("credential") in each vehicle, can be individually revoked
- Offline authority (or multiple) can de-anonymize signatures

Main challenge: efficiency & bandwidth & revocation (300 Bytes max, 1-10sign per vehicle/sec)

Long-term CA

security

privacy

V2X Communication via Group Signatures

- Our approach:
 - Long-term conventional certificate (revocation is easy)
 - Short-lived group membership credentials incl attribute =validity epoch, e.g, week
 - Compact sigs: GetShorty + PS group signatures + attribute

V2X Communication via Group Signatures

- Regular position beacon messages, broadcasted 1–10 times per second
 - Cooperative Awareness Messages (CAMs)
 - Dynamic information: position, speed, and heading
 - Static information: length, width, and sensor accuracy
- Signed with privacy-preserving (group/pseudonym) signature but broadcast in plaintext

Group Signature cannot guarantee privacy when messages are already identifying!

V2X Communication via Group Signatures

& Encryption

- Privacy-preserving V2X communication needs encryption!
- New Approach: Zone Encryption with Anonymous Authentication [CDLNT19]
 - Vehicles exchange short-lived & geo-local symmetric AE keys
 - Use (compact) group signatures for authenticated key-exchange
 - Send CAMs encrypted with AE keys (w/o group signature)
 - Legitimate vehicles can decrypt, but no passive eavesdropping & mass surveillance

Roadmap

Introduction to Group Signatures

- Setting & Security Properties
- Schemes
- Similar Concepts
 - Anonymous Credentials
 - Direct Anonymous Attestation (DAA)
 - Enhanced Privacy ID (EPID)

Group Signatures & V2X Communication

Group Signatures with Selected Linkability for V2Cloud

Vehicle-to-Cloud Communication

- V2Cloud communication: updates, diagnostics, services (e.g., insurance)
 - Less resource critical (via 4/5G, Wifi), less frequent
- Collection of sensor, driver data general statistics, user-specific services
 - Data usage often not clear at time of collection
 - Requirements: authenticity & privacy

Vehicle-to-Cloud Communication with Group Signatures

- Which variant to control privacy vs utility?
 - **Opening** not suitable too invasive and inefficient. Might have to open all signatures
 - User-controlled linkability (pseudonym) too inflexible:
 - Decision about linkability must be done at the moment the data is disclosed
 - No option to selectively correlate data later on \rightarrow bad tradeoff between privacy and utility
 - Static pseudonyms allow inference attacks

CA / Issuer

Group Signatures with Selective Linkability [GL19]

- Extends group signatures to allow for selective linkability after the data is collected
 - Data is fully unlinkable and anonymous when its collected
 - Selective subsets can be correlated in a consistent manner later on
 - Linkability is created through a dedicated entity ightarrow the converter

Optimal privacy when data is collected while preserving the full utility of the data

Group Signatures with Selective Linkability | Sign

- Data is collected in unlinkable, authenticated snippets
- Group signatures with fresh pseudonyms for every message
 - → Cloud is assured that only legitimate data gets uploaded & full privacy is preserved

Group Signatures with Selective Linkability | Convert

- Only required sub-sets of the data are made linkable w.r.t. to join-specific pseudonym
- Converter transforms pseudonyms into consistent representation
 - Obliviousness: converter learns nothing about pseudonyms / messages it transforms
 - Non-transitivity: different conversion requests cannot be linked

Summary

- Group signatures: privacy-preserving authentication
- Many variants & extensions exist:
 - Opener, pseudonyms, attributes, hardware-based, revocation, ...
 - Anonymous Credentials, DAA, EPID
- Defining security for group signatures requires a lot of care
- Group signature cannot guarantee privacy when messages are already identifying!

Thanks! Questions?

anj@zurich.ibm.com