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In this talk...

Short recap on side-channel analysis and datasets
Evaluation metrics in SCA vs ML

Redefinition of profiled side-channel analysis through
semi-supervised learning

Learning with imbalanced data

New approach to compare profiled side-channel attacks:
efficient attacker framework



Side-channel analysis

Invasive hardware attacks,
proceeding in two steps:

1) During cryptographic
operations capture additional
side-channel information

e power consumption/
electromagnetic emanation

e timing

* NOise, ...

2) Side-channel distinguisher to Input
reveal the secret

¥ channel
t distinguisher §




Profiled SCA

e strongest attacker model

e attacker processes two devices - profiling and attacking

PROFILING ATTACKING

I traces traces

| classification
. algorithm

classification [«
algorithm

l hypothetical

profiled
model

| labels
labels

secret

e attention on devices and overfitting



Profiled SCA

e Profiling phase: building model

# samples




Profiled SCA

e Attacking phase: for each trace in the attacking phase,
get the probability that the trace belongs to a certain
class label

@ Probability
i keyguesses



Profiled SCA

e Attacking phase: maximum likelihood principle to
calculate that a set of traces belongs to a certain key

Probabilities
Trace Probabilities
Probabilities :
key ranking

+-—

# key guesses




Template attack

first profiled attack

optimal from an information theoretical point of view

——

Density estimation densities
may not be optimal in practice (limited profiling phase)

often works with the pre-assumption that the noise is normal
distributed

e to estimate: mean and covariances for each class label

e pooled version



Support Vector Machines

e one of first introduced machine learning algorithm to SCA

e shown to be effective when the number of profiling traces
IS not “unlimited”

e support vectors are estimated in profiling phase

hyperplanes /

SVM
support vectors



Random Forest

one of first introduced machine learning algorithm to SCA

shown to be effective when the number of profiling traces
IS not “unlimited”

often less effective as SVM, but way more efficient in the
training phase

RF trees



Neural Networks

e new hype for side-channel analysis
e can be really effective in particular with countermeasures

e so far most investigated are CNN and MLP

.

network design/

CNN/MLP :
weights



Guessing: labels vs keys

e Make "models” on:
e secret key directly or
e intermediate values related to the key

e Function between intermediate value and secret key
e one-to-one (e.g. value = (Sbox[plaintext ® secretkey)))

e one-to-many (e.g. value = HW(Sbox[plaintext & secretkey]))



Dataset 1

Low noise dataset - DPA contest v4 (publicly available)

Atmel ATMega-163 smart card connected to a SASEBO-
W board

AES-256 RSM
(Rotating SBox Masking)

In this talk:
mask assumed known




Leakage

e Correlation between HW of the Sbox output and traces
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Leakage densities

e |n low noise scenarios: HW easily distinguishable
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Dataset 2

High noise dataset (still unprotected!)

AES-128 core was written in VHDL in a round based
architecture (11 clock cycles for each encryption).

The design was implemented on Xilinx Virtex-5 FPGA of a
SASEBO Gill evaluation board.
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Leakage

e Correlation between HD of the Sbox output (last round)
and traces
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Leakage densities

 High noise scenario: densities of HWs
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Dataset 3

e AES-128: Random delay countermeasure => misaligned

e 8-bit Atmel AVR microcontroller

e publicly available on github: https://github.com/
ikizhvatov/randomdelays-traces



https://github.com/ikizhvatov/randomdelays-traces
https://github.com/ikizhvatov/randomdelays-traces
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Leakage densities

* High noise, random delay dataset
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Evaluation metrics in SCA vs ML



Evaluation metrics

e common side-channel metrics

e Success rate : Average estimated probability of
SUCCESS

e (Guessing entropy: Average secret key rank

e depends on the number of traces used in the attacking
phase

e average is computed from E number of experiments



Evaluation metrics

Accuracy: commonly used in machine learning applications
average estimated probability (percentage) of correct classification

averaged over the number of traces used in the attacking phase
(not over the experiments)

accuracy cannot be translated into guessing entropy/ success rate!

Is particularly important when the values to classify are not
uniformly distributed

indication: high accuracy => good side-channel performance (not
vice versa)



SR/GE vs acc

Label prediction vs fixed key prediction

e accuracy: each label is considered independently (along
#measurements)

* SR/GE: computed regarding fixed key, accumulated over
#measurements

* |ow accuracy may not indicate low SR/GE

* even accuracies below random guessing may lead to high SR/low
GE for a large #measurements

 random guessing should lead to low SR/ GE around 2An/2 (n=#bits)



SR/GE vs acc

Global accuracy vs class accuracy

e only relevant for non-bijective function between class and
key (e.g. class involved the HW)

e the importance to correctly classify more unlikely values
in the class may be more significant than others

e accuracy Is averaged over all class values

e recall may be more precise



Discussion

e May there be another ML metric which is better related to GE/SR?

* |n our experiments we could not find any other metric from the
set of “usual” ML metrics...

e What to do about training? Can’t we just use GE/SR....

e Not as straightforward, and integrating GE/SR will make the
training extremely more expensive

* not all ML technigues are outputting probabillities

 For DL recent advances with cross entropy...

e more details in: Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, Francesco
Regazzoni: The Curse of Class Imbalance and Conflicting Metrics with Machine Learning for
Side-channel Evaluations. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(1): 209-237 (2019)



Redefinition of profiled side-
channel analysis through semi-
supervised learning



Attacker models

e profiled (traditional view):
attacker processes two devices - profiling and attacking

PROFILING ATTACKING

I traces traces
| classification ,\_profiled classification [«
. algorithm model algorithm \ .
I labels hypothetical
l labels

secret




Attacker models

e profiled (more realistic?!):
attacker processes two devices - profiling and attacking

PROFILING , ATTACKING

l '
traces traces
T classification profiled classification
algorithm model algorithm -~
> |abels T . l hyplo:)h(?tical
abels

secret




Semi-supervised Learning

e |Labeled data (profiling device)
e Unlabeled data (attacking device)

e Combined in the profiling phase to build more realistic
model about the attacking device

Labeled dat
@ MPEIEERRER Decision boundary (labeled)




Semi-supervised approach

e Settings: 25k traces total

~ (100+424.9k): [ = 100 , u = 24900 — 0.4% vs 99.6%
—~ (500+424.5k): I = 500 , u = 24500 — 2% vs 98%

~ (1k+24k): [ = 1000 , u = 24000 — 4% vs 96%

~ (10k-+15Kk): I = 10000 , u = 15000 — 40% vs 60%
~ (20k+5k): I = 20000 , u = 5000 — 80% vs 20%

e the smaller the training set the higher the influence
e |abeling strategies:

e Self-training: classifier trained with labeled data, used to predict
unlabelled data, label assigned when probability > threshold

e |abel spreading: label spread according to their proximity



Semi-supervised approach

e Dataset 1: Low noise unprotected, HW model
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Semi-supervised approach

e Dataset 2: High noise unprotected, HW model
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Semi-supervised approach

e Dataset 2: High noise unprotected, HW model

TA

150 . P .
——100 (LS)
—500 (LS)

1000 (LS)
— 10000 (LS)
{20000 (LS)
—s—100 (ST)
—e—500 (ST)

1000 (ST)
| —+—10000 (ST)

100

1y
G —+—20000 (ST)
- - 100 d|
- - 500
50 1000 y
- - 10000

20000

0.5 1 1.5 2
Number of traces %104



Semi-supervised approach

e Dataset 3: High noise with random delay, intermediate
value model
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Observations

works in cases of 9 and 256 classes and high and low noise!!
self-training most effective in our studies

the higher the noise in the dataset the more labeled data is
required:

e Dataset 1: improvements for 100 and 500 labeled data

e Dataset 2: improvements mostly for 1k labeled data

e Dataset 3: improvements for 20k labeled data

More details in: Stjepan Picek, Annelie Heuser, Alan Jovic, Karlo
Knezevic, Tania Richmond: Improving Side-Channel Analysis
Through Semi-supervised Learning. CARDIS 2018: 35-50



Learning with imbalanced data



Imbalanced data

Hamming weight leakage model commonly used

may not reflect realistic leakage model, but reduces the
complexity of learning

works (sufficiently good) in many scenarios for attacking

for example, occurrences of Hamming weights for 8-bit
variables:

HW value 0 1 2 3 4 H 6 7 8
Occurrences 1 8 28 56 70 5H6 28 8 1




Why do we care?

most machine learning techniques are “designed” to maximise
accuracy

predicting always HW class 4 gives accuracy of 27%

HW value 0 1 2 3 4 H 6 7 8
Occurrences 1 8 28 56 70 5H6 28 8 1

IS not related to secret key value and therefore does not give any
information for SCA

In general: less populated classes give more information about key
than higher populated



Data sampling techniques

e How to transform the data set size to achieve
balancedness?

e throw away => random under sampling

e use data multiple times => random oversampling with
replacement

e add synthetic data => synthetic minority oversampling
technique (SMOTE)

e add synthetic data + clean “noisy” data: synthetic
minority oversampling technigue with edited nearest
neighbour (SMOTE+ENN)



Experiments

 We do not use any specific knowledge about the
implementation / dataset / distribution

e Varying number of training samples in the profiling phase
o 1k, 10k, 50k for Dataset 1 & 3

e 1k, 10k, 25k for Dataset 2



Data sampling techniques

e Dataset 1. Low noise unprotected
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Data sampling techniques

e Dataset 2. High noise unprotected
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Data sampling techniques

e Dataset 3: High noise with random delay
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Further results

e additionally we tested SMOTE for CNN, MLP, TA:
e also beneficial for CNN and MLP
* not for TA (in our settings):
* |s not “tuned” regarding accuracy

 may still benefit if #measurements is too low to build
stable profiles

* In case available: perfectly “natural” balanced dataset leads to
better performance

* more details in: Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, Francesco
Regazzoni: The Curse of Class Imbalance and Conflicting Metrics with Machine
Learning for Side-channel Evaluations. IACR Trans. Cryptogr. Hardw. Embed. Syst.

2019(1): 209-237 (2019)



New approach to compare
profiled side-channel attacks:
efficient attacker model



Efficient Attacker Model

Profiling device

N

Set of N profiling
traces / iputs

l

profiled model

Attacking device

Set of Q attacking
traces

l

)

>{side-channel attack}—» key guess

N traces in profiling
phase

commonly: N as large as
possible

more interesting: what is
the minimum #traces to
still be able to attack

real-world evaluations
only have limited
resources



Efficient Attacker Model

e Why?
More traces is not always better...

]
Incorrect keys
Correct key

Values of the DoM distinguisher
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Efficient Attacker Model

e Why?
More traces is not always better...

MLP

e Realistic setting:

e device 1: training

Guessing entropy

e device 2: testing

0 20 40 60 80 100

o Overflttl ng # traces for attack



Efficient Attacker Model

e Minimum number of traces such that
an evaluation metric is smaller than a threshold
depending on the number of attacking traces
e certain threshold for example:
e guessing entropy < 10,

e success rate > 90%

e accuracy > 10%



EfflClent Attacker Model
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Discussion

e Can be used to benchmark “anything”:
e | eakage model: HW vs intermediate
e Attacks: DLvs ML vs TAvs ....
e Datasets / implementations / designs

e Future directions

e include computational complexity / required resources
of attacks as a further dimension



Conclusion

Evaluation metrics in SCA vs ML:
= accuracy != GE or SR

Redefinition of profiled side-channel analysis through semi-
supervised learning:

= consider unlabelled data from testing device already in
profiling phase

Learning with imbalanced data
= Data sampling helps to improve GE/SR

New approach to compare profiled side-channel attacks:
efficient attacker model

= More realistic and meaningful benchmarking!



Looking for PostDocs...

e Always and currently looking for good candidates of postdocs in
our team (TAMIS, IRISA (Inria, CNRS,...), Rennes, France)

e Research in
e Side-channel analysis (particularly post-quantum crypto)
* Formal methods
* malware

* code analysis
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