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Introduction

Typical ingredients for a side-channel attack

ByteSub(M⊕ K)
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Introduction

What do the following have in common?

Ascon
Gimli
Keccak-p
Xoodoo

Possible answers:
They have 2 syllables
They are permutations (or permutation-based schemes)
They can be used in some duplex-based keyed mode
Their round function has degree 2
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Introduction

The Keccak-p round function

R = ι ◦ χ ◦ π ◦ ρ ◦ θ

Linear part λ followed by non-linear part χ

λ = π ◦ ρ ◦ θ: mixing followed by bit transposition
χ: simple mapping operating on rows:

bi ← bi+(bi+1+1)bi+2
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Introduction

In general

Quadratic form for output bit i:

Ri(s) = sT Ai s + constantsi
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Power-attacking

Attacking keyed sponge functions / duplex objects

1 Attack the first round after absorbing known input bits
2 Compute backward by inverting the permutation
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Power-attacking

A model of the power consumption
Consumption at any time instance can be modeled as

P = ∑
i
Ti[di]

di: Boolean variables that express activity
bit 1 in a given register or gate output at some stage
flipping of a specific register or gate output at some stage

Ti[0] and Ti[1]: stochastic variables

Simplified model

P = α + ∑
i
(−1)di
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Power-attacking

DPA applied to an unprotected implementation

Leakage exploited: switching consumption of register bit 0
Value switches from a0 to b0 + (b1 + 1)b2
Activity equation: d = a0 + b0 + (b1 + 1)b2
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Power-attacking

DPA applied to an unprotected implementation

Take the case M = 0
We call K the input of χ-block if M = 0
K will be our target
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Power-attacking

DPA applied to an unprotected implementation

We call the effect of M at input of χ: µ

µ = λ(M)
Linearity of λ: B = K+ λ(M)
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Power-attacking

DPA applied to an unprotected implementation

d = a0 + k0 + (k1 + 1)(k2) + µ0 + (µ1 + 1)µ2 + k1µ2 + k2µ1
Fact: value of q = a0 + k0 + (k1 + 1)k2 is same for all traces
Let M0: traces with d = q and M1: d = q+ 1
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Power-attacking

DPA applied to an unprotected implementation

Selection: s(M,K∗) = µ0 + (µ1 + 1)µ2 + k∗1µ2 + k∗2µ1
Values of µ1 and µ2 computed from M
Hypothesis has two bits only: k∗1 and k∗2
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Power-attacking

DPA applied to an unprotected implementation

Correct hypothesis K
traces in M0: d = q
traces in M1: d = q+ 1

Incorrect hypothesis K∗ = K+ ∆
trace in M0: d = q+ µ1δ2 + µ2δ1
trace in M1: d = q+ µ1δ2 + µ2δ1 + 1

Remember: µ = λ(M)
random inputs M lead to random µ1 and µ2
Incorrect hypothesis: d uncorrelated with {M0,M1}
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Power-attacking

In general
Quadratic form for output bit i:

Ri(s) = sT Ai s + constantsi

After the first round after absorbing the message:

di(M,K) = αi(M) + βi(K) + KTΓiM

Selection function:

si(M,K∗) = αi(M) + KTΓiM

(In)correct guess:

si(M,K+ ϵ) = si(M,K) + ϵTΓiM

[Bertoni, Daemen, Debande, Le, Peeters, Van Assche, HASP 2012]
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Power-protecting

Secret sharing

Countermeasure at algorithmic level:
Split variables in random shares: x = a⊕ b⊕ . . .
Keep computed variables independent from native variables
Protection against n-th order DPA: at least n+ 1 shares
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Power-protecting

Software: two-share masking

χ : xi ← xi + (xi+1 + 1)xi+2 becomes:

ai ← ai + (ai+1 + 1)ai+2 + ai+1bi+2
bi ← bi + (bi+1 + 1)bi+2 + bi+1ai+2

Independence from native variables, if:
we compute left-to-right
we avoid leakage in register or bus transitions

λ becomes:
a ← λ(a)
b ← λ(b)
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Power-protecting

Software: two-share masking (faster)

Making it faster!
χ becomes:

ai ← ai + (ai+1 + 1)ai+2 + ai+1bi+2 + (bi+1 + 1)bi+2 + bi+1ai+2
bi ← bi

Precompute R = b+ λ(b)
λ becomes:

a ← λ(a) + R
b ← b
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Power-protecting

Hardware: two shares are not enough

Unknown order in combinatorial logic!

ai ← ai + (ai+1 + 1)ai+2+ai+1bi+2
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Power-protecting

Using a threshold secret-sharing scheme

Idea: incomplete computations only
Each circuit does not leak anything
[Nikova, Rijmen, Schläffer 2008]

Number of shares: at least 1 + algebraic degree
3 shares are needed for χ

Glitches as second-order effect
A glitch can leak about two shares, say, a+ b
Another part can leak c
⇒ as if two shares only!
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Power-protecting

Three-share masking for χ

Implementing χ in three shares:

ai ← bi + (bi+1 + 1)bi+2 + bi+1ci+2 + ci+1bi+2
bi ← ci + (ci+1 + 1)ci+2 + ci+1ai+2 + ai+1ci+2
ci ← ai + (ai+1 + 1)ai+2 + ai+1bi+2 + bi+1ai+2
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Power-protecting

One-cycle round architecture
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Power-protecting

Three-cycle round architecture
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Conclusions

Any questions?

Thanks for your attention!
https://keccak.team/

23 / 23

https://keccak.team/

	Introduction
	Power-attacking
	Power-protecting

