

Power analysis of degree-2 round functions

Gilles VAN ASSCHE¹

¹STMicroelectronics

SCA workshop
Šibenik, Croatia, June 2019

Based on joint work with Guido BERTONI, Joan DAEMEN,
Nicolas DEBANDE, Thanh-Ha LE, Michaël PEETERS, Ronny VAN KEER

Outline

1 Introduction

2 Power-attacking

3 Power-protecting

Outline

1 Introduction

2 Power-attacking

3 Power-protecting

Typical ingredients for a side-channel attack

ByteSub($M \oplus K$)

What do the following have in common?

- Ascon
- Gimli
- KECCAK-*p*
- Xoodoo

Possible answers:

- They have 2 syllables
- They are permutations (or permutation-based schemes)
- They can be used in some duplex-based keyed mode
- Their round function has degree 2

What do the following have in common?

- Ascon
- Gimli
- KECCAK-*p*
- Xoodoo

Possible answers:

- They have 2 syllables
- They are permutations (or permutation-based schemes)
- They can be used in some duplex-based keyed mode
- Their round function has degree 2

What do the following have in common?

- Ascon
- Gimli
- KECCAK-*p*
- Xoodoo

Possible answers:

- They have 2 syllables
- They are permutations (or permutation-based schemes)
- They can be used in some duplex-based keyed mode
- Their round function has degree 2

What do the following have in common?

- Ascon
- Gimli
- KECCAK-*p*
- Xoodoo

Possible answers:

- They have 2 syllables
- They are permutations (or permutation-based schemes)
- They can be used in some duplex-based keyed mode
- Their round function has degree 2

What do the following have in common?

- Ascon
- Gimli
- KECCAK-*p*
- Xoodoo

Possible answers:

- They have 2 syllables
- They are permutations (or permutation-based schemes)
- They can be used in some duplex-based keyed mode
- Their round function has degree 2

What do the following have in common?

- Ascon
- Gimli
- KECCAK-*p*
- Xoodoo

Possible answers:

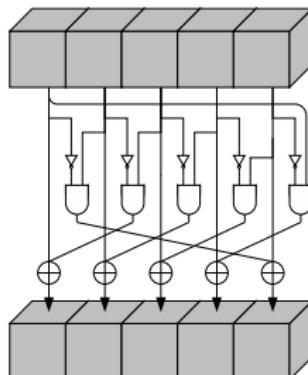
- They have 2 syllables
- They are permutations (or permutation-based schemes)
- They can be used in some duplex-based **keyed** mode
- **Their round function has degree 2**

The KECCAK- p round function

$$R = \iota \circ \chi \circ \pi \circ \rho \circ \theta$$

- Linear part λ followed by non-linear part χ
- $\lambda = \pi \circ \rho \circ \theta$: mixing followed by bit transposition
- χ : simple mapping operating on rows:

$$b_i \leftarrow b_i + (b_{i+1} + 1)b_{i+2}$$



In general

Quadratic form for output bit i :

$$R_i(s) = s^T \mathbf{A}_i s + \text{constants}_i$$

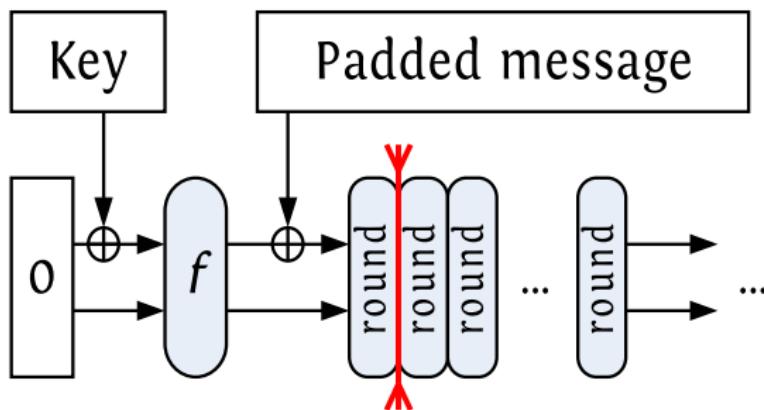
Outline

1 Introduction

2 Power-attacking

3 Power-protecting

Attacking keyed sponge functions / duplex objects



- 1 Attack the first round after absorbing known input bits
- 2 Compute backward by inverting the permutation

A model of the power consumption

Consumption at any time instance can be modeled as

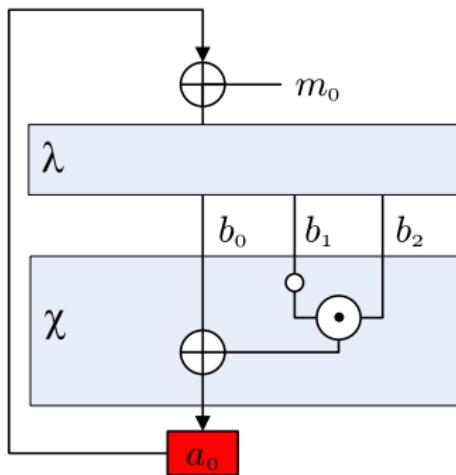
$$P = \sum_i T_i[d_i]$$

- d_i : Boolean variables that express *activity*
 - bit 1 in a given register or gate output at some stage
 - flipping of a specific register or gate output at some stage
- $T_i[0]$ and $T_i[1]$: stochastic variables

Simplified model

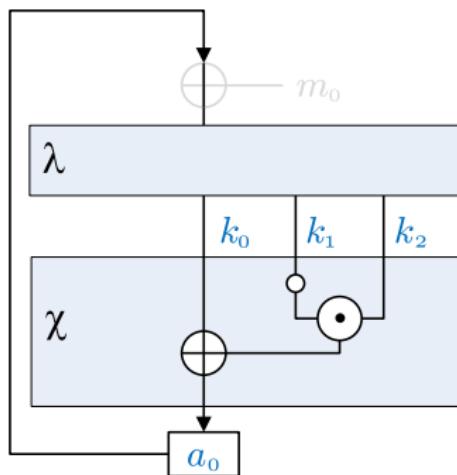
$$P = \alpha + \sum_i (-1)^{d_i}$$

DPA applied to an unprotected implementation



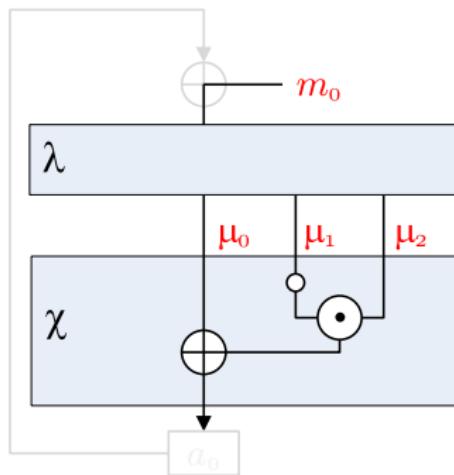
- Leakage exploited: switching consumption of **register bit 0**
- Value switches from a_0 to $b_0 + (b_1 + 1)b_2$
- Activity equation: $d = a_0 + b_0 + (b_1 + 1)b_2$

DPA applied to an unprotected implementation



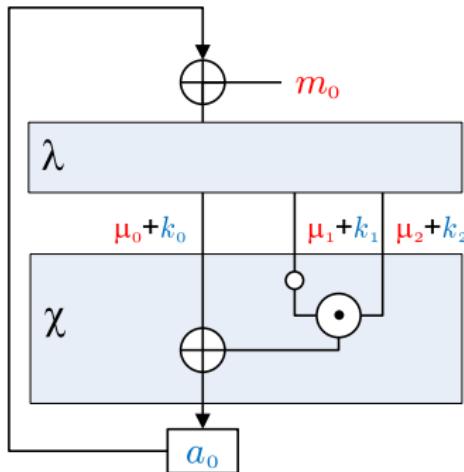
- Take the case $M = 0$
- We call K the input of χ -block if $M = 0$
- K will be our target

DPA applied to an unprotected implementation



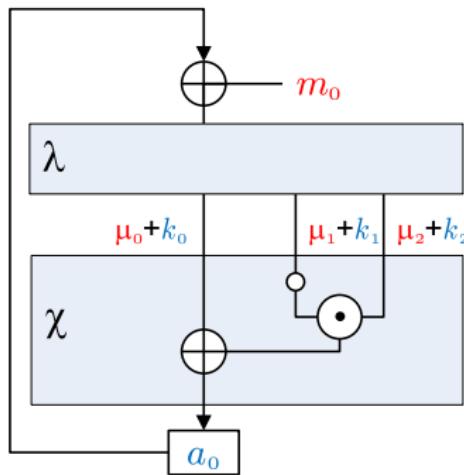
- We call the effect of M at input of χ : μ
- $\mu = \lambda(M)$
- Linearity of λ : $B = K + \lambda(M)$

DPA applied to an unprotected implementation



- $d = a_0 + k_0 + (k_1 + 1)k_2 + \mu_0 + (\mu_1 + 1)\mu_2 + k_1\mu_2 + k_2\mu_1$
- Fact: value of $q = a_0 + k_0 + (k_1 + 1)k_2$ is same for all traces
- Let M_0 : traces with $d = q$ and M_1 : $d = q + 1$

DPA applied to an unprotected implementation



- Selection: $s(M, K^*) = \mu_0 + (\mu_1 + 1)\mu_2 + k_1^*\mu_2 + k_2^*\mu_1$
- Values of μ_1 and μ_2 computed from M
- Hypothesis has two bits only: k_1^* and k_2^*

DPA applied to an unprotected implementation

- Correct hypothesis K
 - traces in M_0 : $d = q$
 - traces in M_1 : $d = q + 1$
- Incorrect hypothesis $K^* = K + \Delta$
 - trace in M_0 : $d = q + \mu_1\delta_2 + \mu_2\delta_1$
 - trace in M_1 : $d = q + \mu_1\delta_2 + \mu_2\delta_1 + 1$
- Remember: $\mu = \lambda(M)$
 - random inputs M lead to random μ_1 and μ_2
 - Incorrect hypothesis: d uncorrelated with $\{M_0, M_1\}$

In general

Quadratic form for output bit i :

$$R_i(s) = s^T \mathbf{A}_i s + \text{constants}_i$$

After the first round after absorbing the message:

$$d_i(M, K) = \alpha_i(M) + \beta_i(K) + K^T \Gamma_i M$$

Selection function:

$$s_i(M, K^*) = \alpha_i(M) + K^T \Gamma_i M$$

(In)correct guess:

$$s_i(M, K + \epsilon) = s_i(M, K) + \epsilon^T \Gamma_i M$$

[Bertoni, Daemen, Debande, Le, Peeters, Van Assche, HASP 2012]

In general

Quadratic form for output bit i :

$$R_i(s) = s^T \mathbf{A}_i s + \text{constants}_i$$

After the first round after absorbing the message:

$$d_i(M, K) = \alpha_i(M) + \beta_i(K) + K^T \Gamma_i M$$

Selection function:

$$s_i(M, K^*) = \alpha_i(M) + K^T \Gamma_i M$$

(In)correct guess:

$$s_i(M, K + \epsilon) = s_i(M, K) + \epsilon^T \Gamma_i M$$

[Bertoni, Daemen, Debande, Le, Peeters, Van Assche, HASP 2012]

In general

Quadratic form for output bit i :

$$R_i(s) = s^T \mathbf{A}_i s + \text{constants}_i$$

After the first round after absorbing the message:

$$d_i(M, K) = \alpha_i(M) + \beta_i(K) + K^T \Gamma_i M$$

Selection function:

$$s_i(M, K^*) = \alpha_i(M) + K^T \Gamma_i M$$

(In)correct guess:

$$s_i(M, K + \epsilon) = s_i(M, K) + \epsilon^T \Gamma_i M$$

[Bertoni, Daemen, Debande, Le, Peeters, Van Assche, HASP 2012]

In general

Quadratic form for output bit i :

$$R_i(s) = s^T \mathbf{A}_i s + \text{constants}_i$$

After the first round after absorbing the message:

$$d_i(M, K) = \alpha_i(M) + \beta_i(K) + K^T \Gamma_i M$$

Selection function:

$$s_i(M, K^*) = \alpha_i(M) + K^T \Gamma_i M$$

(In)correct guess:

$$s_i(M, K + \epsilon) = s_i(M, K) + \epsilon^T \Gamma_i M$$

[Bertoni, Daemen, Debande, Le, Peeters, Van Assche, HASP 2012]

Outline

1 Introduction

2 Power-attacking

3 Power-protecting

Secret sharing

- Countermeasure at algorithmic level:
 - Split variables in *random* shares: $x = a \oplus b \oplus \dots$
 - Keep computed variables *independent* from *native* variables
 - Protection against n -th order DPA: at least $n + 1$ shares

Software: two-share masking

- $\chi : x_i \leftarrow x_i + (x_{i+1} + 1)x_{i+2}$ becomes:

$$\begin{aligned} a_i &\leftarrow a_i + (a_{i+1} + 1)a_{i+2} + a_{i+1}b_{i+2} \\ b_i &\leftarrow b_i + (b_{i+1} + 1)b_{i+2} + b_{i+1}a_{i+2} \end{aligned}$$

- Independence from native variables, if:
 - we compute left-to-right
 - we avoid leakage in register or bus transitions

- λ becomes:

$$\begin{aligned} a &\leftarrow \lambda(a) \\ b &\leftarrow \lambda(b) \end{aligned}$$

Software: two-share masking (faster)

- Making it **faster**!

- χ becomes:

$$\begin{aligned} a_i &\leftarrow a_i + (a_{i+1} + 1)a_{i+2} + a_{i+1}b_{i+2} + (b_{i+1} + 1)b_{i+2} + b_{i+1}a_{i+2} \\ b_i &\leftarrow b_i \end{aligned}$$

- Precompute $R = b + \lambda(b)$

- λ becomes:

$$\begin{aligned} a &\leftarrow \lambda(a) + R \\ b &\leftarrow b \end{aligned}$$

Software: two-share masking (faster)

- Making it **faster**!

- χ becomes:

$$a_i \leftarrow a_i + (a_{i+1} + 1)a_{i+2} + a_{i+1}b_{i+2} + (b_{i+1} + 1)b_{i+2} + b_{i+1}a_{i+2}$$

- Precompute $R = b + \lambda(b)$

- λ becomes:

$$a \leftarrow \lambda(a) + R$$

Hardware: two shares are not enough

- Unknown order in combinatorial logic!

$$a_i \leftarrow a_i + (a_{i+1} + 1) \color{red}{a_{i+2}} + a_{i+1} \color{red}{b_{i+2}}$$

Using a threshold secret-sharing scheme

- Idea: incomplete computations only
 - Each circuit does not leak anything
[Nikova, Rijmen, Schläffer 2008]
- Number of shares: at least $1 + \text{algebraic degree}$
3 shares are needed for } \chi
- Glitches as second-order effect
 - A glitch can leak about two shares, say, $a + b$
 - Another part can leak c
 - \Rightarrow as if two shares only!

Using a threshold secret-sharing scheme

- Idea: incomplete computations only
 - Each circuit does not leak anything
[Nikova, Rijmen, Schläffer 2008]
- Number of shares: at least $1 + \text{algebraic degree}$
3 shares are needed for χ
- Glitches as second-order effect
 - A glitch can leak about two shares, say, $a + b$
 - Another part can leak c
 - \Rightarrow as if two shares only!

Using a threshold secret-sharing scheme

- Idea: incomplete computations only
 - Each circuit does not leak anything
[Nikova, Rijmen, Schläffer 2008]
- Number of shares: at least $1 + \text{algebraic degree}$
3 shares are needed for χ
- Glitches as second-order effect
 - A glitch can leak about two shares, say, $a + b$
 - Another part can leak c
 - \Rightarrow as if two shares only!

Three-share masking for χ

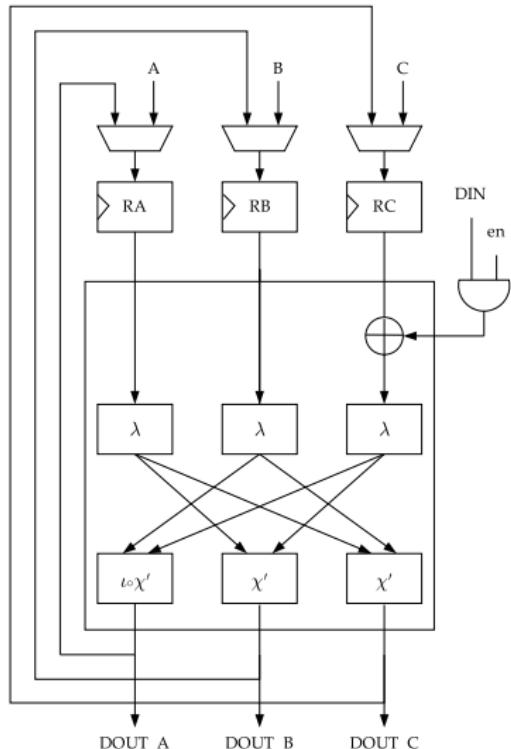
- Implementing χ in three shares:

$$a_i \leftarrow b_i + (b_{i+1} + 1)b_{i+2} + b_{i+1}c_{i+2} + c_{i+1}b_{i+2}$$

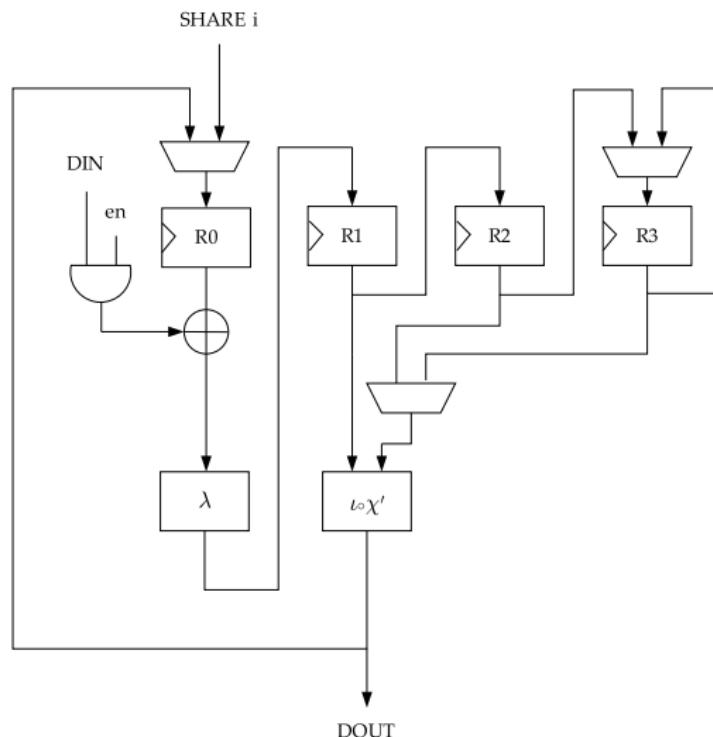
$$b_i \leftarrow c_i + (c_{i+1} + 1)c_{i+2} + c_{i+1}a_{i+2} + a_{i+1}c_{i+2}$$

$$c_i \leftarrow a_i + (a_{i+1} + 1)a_{i+2} + a_{i+1}b_{i+2} + b_{i+1}a_{i+2}$$

One-cycle round architecture



Three-cycle round architecture



Any questions?

Thanks for your attention!

<https://keccak.team/>

