Privacy-Enhancing Technologies: Anonymous Credentials and Pseudonym Systems

Anja Lehmann
IBM Research – Zurich
ROADMAP

- Anonymous Credentials
 - privacy-preserving (user) authentication

- Pseudonym Systems
 - privacy-preserving & auditable data exchange
Strong User Authentication

- Strong (user) authentication via certificates / attribute-based credentials
 - Many European countries have or will introduce eID cards
 - Desirable for security, but detrimental for privacy
 - Existing schemes require full information disclosure & user is linkable in all transactions

→ This is a privacy and security problem!
 - Linkability enables tracking & profiling of users
 - Acquired personal data requires protection
Strong & Privacy-Preserving User Authentication

- Envisioned by Chaum in 1981, first full scheme by Camenisch & Lysyanskaya in 2001
 - User can **selectively disclose** each attribute
 - User can prove **predicates over the attributes**, e.g., “I'm over 18”
 - **Unlinkable** authentication as default, linkability as an option
Envisioned by Chaum in 1981, first full scheme by Camenisch & Lysyanskaya in 2001

- User can **selectively disclose** each attribute
- User can prove **predicates over the attributes**, e.g., “I'm over 18”
- **Unlinkable** authentication as default, linkability as an option
Privacy-Enhancing Credentials | Existing Solutions

- Most prominent core-credential/signature schemes:

 Identity Mixer (IBM)
 - Multi-use credentials
 - Zero-Knowledge Proofs
 - Strong RSA, pairings (LRSW, qSDH)

 U-Prove (Microsoft)
 - One-time use credentials (multi-use via batch-issuance)
 - Blind Signatures
 - RSA, DL
Privacy-Enhancing Credentials | Extended Features

- Many more extensions & properties:
 - Revocation, multi-credential proofs, issuance with carry-over attributes, conditional disclosure, „symmetric“ credentials

- Various cryptographic realizations

Hard to deploy: complex, multitude of protocols, features, inconsistent naming, ...
Privacy-Enhancing Credentials | Generic Framework

- Technology-independent & „easy-to-use“ framework
 - Comprehensive & standardized language framework
 - Technology-agnostic credential & policy handling on top of crypto engine
 - Generic, automated crypto engine

www.zurich.ibm.com/idemix
Privacy-Enhancing Credentials | New Applications

- V2X communication (vehicles (V2V) and infrastructure (V2I))
 - Security needs: authentication & privacy
 - Current approach: pseudonym CA
 - Privacy-credentials fit perfectly! (almost)

- Hardware-based device/user attestation (DAA)
 - Draft for FIDO standard
 - FIDO ("Fast IDentity Online") Alliance
 = industry consortium developing standardized strong user/device authentication

- Blockchain: “eternal” and public transaction ledger
 - Privacy credentials needed to avoid privacy nightmare
 - Identity Mixer being integrated into Hyperledger Fabric
 - IBM joined the Sovrin Foundation – decentralized digital identity network
ROADMAP

- Anonymous Credentials
 - privacy-preserving (user) authentication

- Pseudonym Systems
 - privacy-preserving & auditable data exchange

Pseudonym System | Motivation

How to exchange and correlate (pseudonymous) data?
– E.g., eHealth records, social security system
– User-centric conversion inconvenient & unreliable
Pseudonym System | Globally Unique Pseudonyms

- Data gets associated with globally unique identifiers / pseudonyms
 - E.g., social security number in US, Belgium, Sweden, ...

- Unique identifiers are **security & privacy risk**
 - no control about data exchange & usage
 - if associated data is lost, all pieces can be linked together
 - linkability of data allows re-identification of “anonymized” data (e.g. Netflix challenge)
Pseudonym System | Local Pseudonyms & Trusted Converter

- User data is associated with random looking local identifiers – the *pseudonyms*
- Only central entity – the *converter* – can link & convert pseudonyms

+ control about data exchange
+ if records are lost, pieces cannot be linked together

<table>
<thead>
<tr>
<th>Main ID</th>
<th>Doctor A</th>
<th>Hospital</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice.1210</td>
<td>Hba02</td>
<td>7twnG</td>
</tr>
<tr>
<td>Bob.0411</td>
<td>P89dy</td>
<td>ML3m5</td>
</tr>
<tr>
<td>Carol.2503</td>
<td>912uj</td>
<td>sD7Ab</td>
</tr>
</tbody>
</table>

Doctor A

- ID: Hba02
- ID: P89dy
- ID: 912uj

Hospital

- ID: ML3m5
- ID: sD7Ab
- ID: y2B4m

new Japan eID / social security number system (?)
User data is associated with random looking local identifiers – the *pseudonyms*.

Only central entity – the *converter* – can link & convert pseudonyms.

+ control about data exchange
+ if records are lost, pieces cannot be linked together
+ converter can provide audit logs to users (*GDPR*-requirement)
 - converter learns all request & knows all correlations
Pseudonym System | Local Pseudonyms & Oblivious Converter

- User data is associated with random looking local identifiers – the *pseudonyms*
- Only central entity – the *converter* – can link & convert pseudonyms

User Portal for Bob.0411

Doctor A → Hospital. 02/26/2017...

Converter

Doctor A

<table>
<thead>
<tr>
<th>ID</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hba02</td>
<td></td>
</tr>
<tr>
<td>P89dy</td>
<td></td>
</tr>
<tr>
<td>912uj</td>
<td></td>
</tr>
</tbody>
</table>

Hospital

<table>
<thead>
<tr>
<th>ID</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML3m5</td>
<td></td>
</tr>
<tr>
<td>sD7Ab</td>
<td></td>
</tr>
<tr>
<td>y2B4m</td>
<td></td>
</tr>
</tbody>
</table>

+ control about data exchange
+ if records are lost, pieces cannot be linked together
+ converter can provide audit logs to users *(GDPR-requirement)*
 - converter learns all requests & knows all correlations
(Un)linkable Pseudonyms | Pseudonym Generation

- User, converter & server jointly derive pseudonyms from unique identifiers

- [CL15] generation triggered by converter, knows unique IDs
- [CL17] oblivious pseudonym generation triggered by user
(Un)linkable Pseudonyms | Pseudonym Conversion

- Only converter can link & convert pseudonyms, but does so in a blind way
(Un)linkable Pseudonyms | Consistency

- pseudonym generation is deterministic & consistent with blind conversion
(Un)linkable Pseudonyms | Consistency

- pseudonym conversions are transitive, unlinkable data can be aggregated
(Un)linkable Pseudonyms | User Audits

- [CL17] every pseudonym conversion triggers blind generation of audit log entry

<table>
<thead>
<tr>
<th>ID</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hba02</td>
<td></td>
</tr>
<tr>
<td>P89dy</td>
<td></td>
</tr>
<tr>
<td>912uj</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML3m5</td>
<td></td>
</tr>
<tr>
<td>sD7Ab</td>
<td></td>
</tr>
<tr>
<td>y2B4m</td>
<td></td>
</tr>
</tbody>
</table>

Audit Bulletin Board

Converter

Doctor A

Hospital

Unique ID

Bob.0411

Doctor A → Hospital. 02/26/2017
(Un)linkable Pseudonyms | Security Model

- Universal composability (UC) model convenient & **simple** for privacy-preserving systems

\[\begin{align*}
\text{NymGen, } S_A & \quad \text{NymGen, } S_B \\
U_i & \quad \text{NymGen, } S_B \\
\text{NymGen, } S_A, S_B & \quad \text{NymGen, } S_A \\
\text{NymGen, } nym_{i,A} & \quad \text{NymGen, } nym_{i,B} \\
\text{NymGen, } nym_{i,A} & \quad \text{NymGen, } nym_{i,B} \\
\text{NymGen, } nym_{i,A}, S_A, qid & \quad \text{NymGen, } nym_{i,B}, S_A, qid \\
\text{NymGen, } nym_{i,A}, S_A, qid & \quad \text{NymGen, } nym_{i,B}, S_A, qid \\
\end{align*}\]
Our Protocol

- high-level idea of convertible pseudonyms
- adding (efficient) auditability
- security against active adversaries
High-level Idea | Pseudonym Generation

Core Idea
Generation: X blindly computes $nym_{i,A} \leftarrow PRF(k,uid_i)^{x_A}$

1. X and U_i jointly compute $z_i \leftarrow PRF(k,uid_i)$
2. U_i encrypts z_i for S_A

 $C_{nym} \leftarrow Enc(pk_A,z_i)$

3. X blindly computes $nym_{i,A}$

 $C'_{nym} \leftarrow C_{nym}^{x_A}$

4. S_A decrypts pseudonym

 $nym_{i,A} \leftarrow Dec(sk_A,C'_{nym})$

 $nym_{i,A} = PRF(k,uid_i)^{x_A}$
High-level Idea | Pseudonym Conversion

Core Idea
Generation: X blindly computes $nym_{i,A} \leftarrow \text{PRF}(k, uid_i)^{x_A}$
Conversion: X blindly computes $nym_{i,B} \leftarrow nym_{i,A}^{x_B / x_A}$

[1] S_A encrypts $nym_{i,A}$ under S_B's key
$C \leftarrow \text{Enc}(pk_B, nym_{i,A})$

[2] X blindly transforms encrypted pseudonym
$C' \leftarrow C^\Delta$ with $\Delta = x_B / x_A$
$C' = \text{Enc}(pk_B, nym_{i,A})^{x_B / x_A}$
$= \text{Enc}(pk_B, \text{PRF}(k, uid_i)^{x_A})^{x_B / x_A}$
$= \text{Enc}(pk_B, \text{PRF}(k, uid_i)^{x_B})$
$= \text{Enc}(pk_B, nym_{i,B})$

[3] S_B decrypts converted pseudonym
$nym_{i,B} \leftarrow \text{Dec}(sk_B, C')$
$nym_{i,B} = \text{PRF}(k, uid_i)^{x_B}$
High-level Idea | Overview

Generation

Conversion

Converter \(X \)

NymRequest

NymResponse → Server A

nym_{i,A}

ConvRequest → Server A

nym_{i,A}

ConvResponse → Server B

nym_{i,B}
High-level Idea | Adding Auditability

Decrypt all audit ciphertexts: \(info \leftarrow \text{Dec}(usk, C^*) \) ?

\[
\text{NymRequest, } upk' \quad \rightarrow \quad \text{Converter } \chi
\]

\[
\text{NymResponse, } upk' \quad \rightarrow \quad \text{Server A}
\]

\[
nym_{i,A, upk}' \quad \rightarrow \quad \text{Server A}
\]

\[

\begin{align*}
\text{C}^* & \leftarrow \text{Enc}(upk', info) \\
\text{ConvRequest, } upk'' & \rightarrow \quad \text{Server A} \\
\text{ConvResponse, } upk''' & \rightarrow \quad \text{Server B}
\end{align*}
\]

\[
nym_{i,B, upk}''' \quad \rightarrow \quad \text{Server B}
\]

upk is randomizable encryption key
\(upk' \leftarrow \text{RAND}(upk) \)
High-level Idea | Adding Efficient Auditability (via Audit Tags)

decrypt ciphertext for T_A:
$\text{info} \leftarrow \text{Dec(usk,}C^*)$

$\text{NymRequest, upk', }C_T$

$\text{Converter }X$

$\text{NymResponse, upk', }C_T$

Server A

$nym_{i,A}, \text{upk', }T_A$

$\text{T}_A \leftarrow \text{Dec(sk}_A, C_T)$

Generation

Conversion

$\text{Audit Bulletin Board}$

T_A, C^*

\ldots

$\text{C'} \leftarrow \text{Enc(upk'', info)}$

$\text{ConvRequest, upk'', }T_A$

Server A

$nym_{i,A}, \text{upk', }T_A$

$\text{ConvResponse, upk'''}$

Server B

$nym_{i,B}, \text{upk'''}$
High-level Idea | Adding *Efficient* Auditability (via Audit Tags)

Decrypt ciphertext for T_A:
\[
info \leftarrow \text{Dec}(\text{usk}, C^*)
\]

Get new audit tags for T_A:
\[
T_B \leftarrow \text{Dec}(\text{usk}, C^*_{TB})
\]

Generation

Conversion

$C^* \leftarrow \text{Enc}(upk'', info)$

$C^*_{TB} \leftarrow \text{Enc}(upk'', T_B)$...

for random T_B
High-level Idea | Adding Efficient Auditability (via Audit Tags)

decrypt ciphertext for T_A:

$$\text{info} \leftarrow \text{Dec}(\text{usk}, C^*)$$

get new audit tags for T_A:

$$T_B \leftarrow \text{Dec}(\text{usk}, C^*_{TB})$$

$$T'_A \leftarrow \text{Dec}(\text{usk}, C^*_{TA})$$

NymRequest, upk', C_T

Server A

NymResponse, upk', C_T

Server A

ConvRequest, upk'', T_A, C^*_{TA}

Server A

ConvResponse, upk'''

Server B

$T_B \leftarrow \text{Dec}(\text{usk}, C^*_{TB})$

$C^*_{TB} \leftarrow \text{Enc}(\text{upk''', } T_B) \ldots$ for random T_B

$T_A \leftarrow \text{Dec}(\text{sk}_A, C_T)$

Tag Chain:

$$C^* \leftarrow \text{Enc}(\text{upk''', } \text{info})$$

Converter \mathcal{X}

Audit Bulletin Board

T_A, C^*

Tag Chain:

T_A, C^*_{TB}

T_A, C^*_{TA}
High-level Idea | Security against Active Adversaries

decrypt ciphertext for \(T_A \):
\[\text{info} \leftarrow \text{Dec}(\text{usk}, C^*) \]

get new audit tags for \(T_A \):
\[T_B \leftarrow \text{Dec}(\text{usk}, C^*_T B) \]
\[T'_A \leftarrow \text{Dec}(\text{usk}, C^*_T A) \]

Signature scheme for homomorphic encodings
(Un)linkable & Auditable Pseudonyms | Security & Efficiency

- Provably secure construction in the Universal Composability (UC) framework based on
 - homomorphic encryption scheme (ElGamal encryption)
 - homomorphic encryption scheme with re-randomizable public keys (ElGamal-based)
 - oblivious pseudorandom function with committed outputs (based on Dodis-Yampolskiy-PRF)
 - signature scheme for homomorphic encoding functions (based on Groth signature scheme)
 - zero-knowledge proofs (Fiat-Shamir NIZKs)
 - commitment scheme (ElGamal based)
 - DDH

- Secure against actively corrupt users & servers, and honest-but-curious converter
 - (w/o audits even fully corrupt converter [CL15])

- Concrete instantiation ~50ms computational time per party for conversion
Summary

- Mature privacy-enhancing technologies exist – privacy and functionality are not exclusive
- Linkability crucial for utility, but also weakens privacy
 - Paradigm shift: unlinkability per default, linkability only when necessary
 - Controlled, selective linkability & enforced transparency
- GDPR creates a great practical demand for privacy-preserving mechanisms – data minimisation, consent enforcement, auditability, ...
- „Crypto Magic“ needs education and dissemination!

Thanks! Questions?
anj@zurich.ibm.com