
Password-Based Cryptography:

Strong Security from Weak Secrets

Anja Lehmann

IBM Research – Zurich
based on joint work with Jan Camenisch, Anna Lysyanskaya & Gregory Neven

ROADMAP

▪ Password-Based Authentication
How to make password checking systems even better

▪ Password-Authenticated Secret Sharing
How to make cryptography accessible to end users

2

▪ Most prominent form of user authentication – convenient! No key, software, …

Password-Based Authentication

3

username
pwd’

Service
Provider

Password rules:

upper and lower case letters and numbers at least
16 characters in length

never reuse your password on another site

change your passwords periodically

vs. 4-digit PIN for ATM cards

why the difference?

the ATM will retain the card after 3 failed attempts!

h’ = h ?

Username Hash

Alice wb3822Ujsd4

Bob b5kMsa8dsbn

Carol 77peCu52Kry

stores only (salted) password hashes
ℎ = 𝐻𝑎𝑠ℎ(𝑝𝑤𝑑)

▪ If service provider is trusted & throttles after too many failed attempts

→ short passwords are sufficient!

▪ But main threat to password security

is server compromise

Password-Based Authentication

4

Service
Provider

▪ The more complicated our passwords are, the

more guesses the adversary need

NIST: 16-character passwords have 30 bits of

entropy ~ 1 billion possibilities

vs.

$150 GPUs can test ~ 300 billions/second

h’ = h ?

Username Hash

Alice wb3822Ujsd4

Bob b5kMsa8dsbn

Carol 77peCu52Kry

stores only (salted) password hashes
ℎ = 𝐻𝑎𝑠ℎ(𝑝𝑤𝑑)

Passwords inherently insecure?

No! We’re just using them incorrectly …

5

Password-Based Authentication Done Right

▪ Offline attacks are inherent in single-server setting

▪ Solution: split password verification over multiple servers

6

username,
pwd' Password correct?Service

Provider

Backend
Server 1

Backend
Server 2

Backend
Server n

Username Hash

Alice wb3822Ujsd4

Bob b5kMsa8dsbn

Carol 77peCu52Kry

username,
pwd'

Pythia: OPRF Service

7

Service
Provider

Backend
Server

Username Hash

Alice wb3822Ujsd4

Bob b5kMsa8dsbn

Carol 77peCu52Kry

▪ Replace 𝐻𝑎𝑠ℎ by a secure PRF , 𝑝𝑤𝑑

▪ Store at remote server & evaluate PRF obliviously

OPRF
Protocol

[ECSJR’15] Everspaugh, Chatterjee, Scott, Juels, Ristenpart. The Pythia PRF Service. USENIX 2015.

Username Hash

Alice wb3822Ujsd4

Bob b5kMsa8dsbn

Carol 77peCu52Kry

username,
pwd'

Distributed Password Verification | High-Level Idea

▪ Replace 𝐻𝑎𝑠ℎ by a secure PRF , 𝑝𝑤𝑑

▪ Split secret key into n shares

▪ ℎ = PRF , 𝑝𝑤𝑑 computed distributed:

▪ Servers don’t learn anything about 𝑝𝑤𝑑 or ℎ

8

Service
Provider

Backend
Server 1

Backend
Server 2

Backend
Server n

Jointly compute

PRF , 𝑝𝑤𝑑

[CLN’15] Camenisch, Lehmann, Neven. Optimal Distributed Password Verification. CCS 2015.

Distributed Password Verification | Security

▪ Secret key has high-entropy, i.e., cannot be guessed

→Adversary needs backend servers (or full key) to verify password guesses

→Backend servers will stop verification if activity is suspicious

9

Service
Provider

Backend
Server 1

Backend
Server 2

Backend
Server n

Username Hash

Alice wb3822Ujsd4

Bob b5kMsa8dsbn

Carol 77peCu52Kry

Jointly compute

PRF , 𝑝𝑤𝑑

Distributed Password Verification | Proactive Security

▪ Secret key gets re-shared periodically

→ All previous key shares get useless

→ Adversary must break into all servers at the same time

▪ As long as one server is not corrupted

→ Passwords are secure

10

Service
Provider

Servers re-share

secret key

Backend
Server 1

Backend
Server 2

Backend
Server n

Username Hash

Alice wb3822Ujsd4

Bob b5kMsa8dsbn

Carol 77peCu52Kry

DPV Protocol
Optimal Distributed Password Verification. ACM CCS’15.

Camenisch, Lehmann, Neven.

Jointly compute

PRF , 𝑝𝑤𝑑

username,
pwd'

Distributed Password Verification | Protocol

▪ Replace 𝐻𝑎𝑠ℎ by a secure PRF , 𝑝𝑤𝑑

▪ Split secret key into n shares

12

Service
Provider

Backend
Server 1

Backend
Server n

𝐻 𝑢𝑖𝑑, 𝑝𝑤𝑑 𝑘

𝑘 = 𝑘1 + 𝑘2 + …+ 𝑘𝑛 𝑚𝑜𝑑 𝑞

𝑘1

𝑘2

𝑘𝑛

Backend
Server 2

k = random element in Zq

Cyclic group of prime order q

𝐻 𝑢𝑖𝑑, 𝑝𝑤𝑑 𝑘

Naor, Pinkas, Reingold. Distributed Pseudorandom Functions and KDCs. Eurocrypt '99

▪ Replace 𝐻𝑎𝑠ℎ by a secure

▪ Split secret key into n shares

uid, pwd

Distributed Password Verification | Protocol

13

Service
Provider

Backend
Server 1

Backend
Server n

𝑘1

𝑘2

𝑘𝑛

Backend
Server 2

𝑈 = 𝐻 𝑢𝑖𝑑, 𝑝𝑤𝑑

𝑈

𝑉2 = 𝑈
𝑘2

𝑉 = ∏𝑉𝑖 = 𝑈
𝑘1+𝑘2+…+𝑘𝑛

= 𝐻 𝑢𝑖𝑑, 𝑝𝑤𝑑 𝑘

𝑢𝑖𝑑, 𝑝𝑤𝑑

𝑘 = 𝑘1 + 𝑘2 + …+ 𝑘𝑛 𝑚𝑜𝑑 𝑞

𝐻 𝑢𝑖𝑑, 𝑝𝑤𝑑 𝑘

Naor, Pinkas, Reingold. Distributed Pseudorandom Functions and KDCs. Eurocrypt '99

▪ Replace 𝐻𝑎𝑠ℎ by a secure

▪ Split secret key into n shares

uid, pwd

Distributed Password Verification | Protocol

14

Service
Provider

Backend
Server 1

Backend
Server n

𝑘1

𝑘2

𝑘𝑛

Backend
Server 2

random 𝑁 in 𝑍𝑞
𝑈 = 𝐻 𝑢𝑖𝑑, 𝑝𝑤𝑑 𝑁

𝑈

𝑉2 = 𝑈
𝑘2

𝑉 = ∏𝑉𝑖
1/𝑁

= 𝑈
𝑘1+𝑘2+…+𝑘𝑛

= 𝐻 𝑢𝑖𝑑, 𝑝𝑤𝑑 𝑘

𝑢𝑖𝑑, 𝑝𝑤𝑑

ℎ = 𝐻′(𝑢𝑖𝑑, 𝑝𝑤𝑑, 𝑉)

𝑘 = 𝑘1 + 𝑘2 + …+ 𝑘𝑛 𝑚𝑜𝑑 𝑞

𝐻 𝑢𝑖𝑑, 𝑝𝑤𝑑 𝑘

▪ Replace 𝐻𝑎𝑠ℎ by a secure

▪ Split secret key into n shares

uid, pwd

Distributed Password Verification | Protocol

15

Service
Provider

Backend
Server 1

Backend
Server n

𝑘1

𝑘2

𝑘𝑛

Backend
Server 2

random 𝑁 in 𝑍𝑞
𝑈 = 𝐻 𝑢𝑖𝑑, 𝑝𝑤𝑑 𝑁

𝑈

𝑉2 = 𝑈
𝑘2

𝑉 = ∏𝑉𝑖
1/𝑁

= 𝑈
𝑘1+𝑘2+…+𝑘𝑛

= 𝐻 𝑢𝑖𝑑, 𝑝𝑤𝑑 𝑘

+ blinding for adaptive security

𝑢𝑖𝑑, 𝑝𝑤𝑑

ℎ = 𝐻′(𝑢𝑖𝑑, 𝑝𝑤𝑑, 𝑉)

𝑘 = 𝑘1 + 𝑘2 + …+ 𝑘𝑛 𝑚𝑜𝑑 𝑞

𝐻 𝑢𝑖𝑑, 𝑝𝑤𝑑 𝑘

uid, pwd

Distributed Password Verification | Protocol

16

Service
Provider

𝑟𝑎𝑛𝑑𝑜𝑚 𝑁 𝑖𝑛 𝑍𝑞
𝑈 = 𝐻 𝑢𝑖𝑑, 𝑝𝑤𝑑 𝑁

𝑈

𝑉2 = 𝑈
𝑘2

𝑉 = ∏𝑉𝑖
1/𝑁

= 𝑈
𝑘1+𝑘2+…+𝑘𝑛

= 𝐻 𝑢𝑖𝑑, 𝑝𝑤𝑑 𝑘

Backend
Server 1

Backend
Server n

𝑘′1 = 𝑘1 + 𝛿1

𝑘′2 = 𝑘2 + 𝛿2
Backend
Server 2

Agree on pseudorandom shares of zero:

𝛿1 + 𝛿2 + . . . + 𝛿𝑛 = 0 𝑚𝑜𝑑 𝑞

𝑘′𝑛 = 𝑘𝑛 + 𝛿𝑛

+ non-interactive protocol for computing 𝛿𝑖
(leveraging trusted setup & “secure” backup)

𝑘 = 𝑘′1 + 𝑘′2 + …+ 𝑘′𝑛 𝑚𝑜𝑑 𝑞

▪ Proactive security & re-sharing of keys:

▪ No updates of “hash table” needed!

Distributed Password Verification
= Distributed OPRF (Oblivious PRF)

17

Backend
Server 1

Backend
Server n

Backend
Server 2

Servers blindly compute

𝐹𝑢𝑛𝑐 , 𝑝𝑤𝑑𝑦 = PRF 𝑘, 𝑥

compute 𝑦 = PRF 𝑘, 𝑥 in a blind & distributed manner

Distributed Password Verification
= Distributed OPRF (Oblivious PRF)

18

Backend
Server 1

Backend
Server n

𝑘1

𝑘2

𝑘𝑛

Backend
Server 2

compute 𝑦 = PRF 𝑘, 𝑥 in a blind & distributed manner

s. t. 𝑦 = PRF 𝑘, 𝑥

ҧ𝑥 = Blind(𝑥)

𝑦 = Unblind(ത𝑦)

ത𝑦 = Comb ത𝑦1, ത𝑦2, … , ത𝑦𝑛

𝑘 = KGen 𝜏
𝑘1 + 𝑘2 + …+ 𝑘𝑛 = Share(𝑘, 𝑛)

ҧ𝑥

𝑦2 = pPRF 𝑘2, ҧ𝑥

Distributed Password Verification | Security & Efficiency

▪ Efficient & round-optimal protocol

▪ 1 round of communication

▪ Login: one exponentiation per server (two for SP)

▪ Non-interactive key refresh

▪ Prototype implementation & evaluation (Ergon)

▪ 3 backend servers, each 16 x 2.9Ghz core: 285 logins/second

▪ Provable security in very strong security model

▪ Adaptive & active adversaries, UC Framework

▪ One-More Gap DH (OMGDH), Random Oracle

▪ Password protection back where it belongs: on the server !

19

backup state

Internet
DMZ VMs

Refresh

ROADMAP

▪ Password-Based Authentication
How to make password checking systems even better

▪ Password-Authenticated Secret Sharing
How to make cryptography accessible to end users

20

How to bridge cryptographic keys & humans

▪ Most cryptography relies on strong secret keys

▪ Easy to manage for servers and devices … not so easy for humans

21

-----BEGIN PRIVATE KEY-----
MIICXgIBAAKBgQDHikastc8+I81zCg/qWW8dMr8mqvXQ3qbPAmu0RjxoZVI47tvs
kYlFAXOf0sPrhO2nUuooJngnHV0639iTTEYG1vckNaW2R6U5QTdQ5Rq5u+uV3pMk
7w7Vs4n3urQ6jnqt2rTXbC1DNa/PFeAZatbf7ffBBy0IGO0zc128IshYcwIDAQAB
AoGBALTNl2JxTvq4SDW/3VH0fZkQXWH1MM10oeMbB2qO5beWb11FGaOO77nGKfWc
bYgfp5Ogrql4yhBvLAXnxH8bcqqwORtFhlyV68U1y4R+8WxDNh0aevxH8hRS/1X5
031DJm1JlU0E+vStiktN0tC3ebH5hE+1OxbIHSZ+WOWLYX7JAkEA5uigRgKp8ScG
auUijvdOLZIhHWq7y5Wz+nOHUuDw8P7wOTKU34QJAoWEe771p9Pf/GTA/kr0BQnP
QvWUDxGzJwJBAN05C6krwPeryFKrKtjOGJIniIoY72wRnoNcdEEs3HDRhf48YWFo
riRbZylzzzNFy/gmzT6XJQTfktGqq+FZD9UCQGIJaGrxHJgfmpDuAhMzGsUsYtTr
iRox0D1Iqa7dhE693t5aBG010OF6MLqdZA1CXrn5SRtuVVaCSLZEL/2J5UcCQQDA
d3MXucNnN4NPuS/L9HMYJWD7lPoosaORcgyK77bSSNgk+u9WSjbH1uYIAIPSffUZ
bti+jc1dUg5wb+aeZlgJAkEAurrpmpqj5vg087ZngKfFGR5rozDiTsK5DceTV97K
a3Y+Nzl+XWTxDBWk4YPh2ZlKv402hZEfWBYxUDn5ZkH/bw==
-----END PRIVATE KEY-----

E.g., encrypted cloud storage (untrusted cloud)

How to store the secret key?

- Access from many devices
- Trusted hardware inconvenient
- Device(s) can get broken or lost

Secret Sharing | Shamir’ 79

22

Server 1

user shares secret K with n servers

Server 2

Server n

Server' 1

Server' 2

Server' t+1secret K

user retrieves K from at least t+1 servers

secret K

t+1 shares needed to reconstruct K

if at most t servers are corrupt → they don't learn anything about K

Password-Authenticated Secret Sharing | BJSL’11

23

Server 1

Server 2

Server n

Server' 1

Server' 2

Server' t+1secret K

t+1 shares needed to reconstruct K and to verify whether p = p'

if at most t servers are corrupt → they don't learn anything about K or can offline attack p

honest server throttle verification after too many (failed) attempts

[BJSL'11] Bagherzandi, Jarecki, Saxena, Lu. Password-protected secret sharing. CCS 2011

user shares secret K with n servers

protected by password p

user retrieves K from at least t+1 servers

using password p’

secret K
password p

p = p' ?

password p'

Password-Authenticated Secret Sharing (TPASS/PPSS)

24

Server 1

Server 2

Server n

Server' 1

Server' 2

Server' t+1secret K

user shares secret K with n servers

protected by password p

user retrieves K from at least t+1 servers

using password p’

servers SS
password p'

secret K
password p

p = p' ?

user has to remember the servers she trusted at setup

Password-Authenticated Secret Sharing (TPASS/PPSS)

25

Server 1

Server 2

Server n

Server' 1

Server' 2

Server' t+1secret K

[CLLN’14] Camenisch, Lehmann, Lysyanskaya, Neven.
Memento: How to Reconstruct your Secrets from a Single Password in a Hostile Environment. Crypto 2014

user shares secret K with n servers

protected by password p

user retrieves K from at least t+1 servers

using password p’

servers SS
password p'

if user gets tricked into retrieval with t+1 corrupt servers
→ password p' is leaked

secret K
password p

p = p' ?

Scheme Security
Model

Assumption Rounds Exponentiation
User Server

BJSL’11 Game DDH-ROM 3 8t+17 16

CLLN’14 UC DDH-ROM 5 14t+24 7t+28

JKK’14 Game OMGDH-ROM 1 2t+3 3

ACNP’16 Game OMGDH-ROM 1 ? ?

JKKX’16 UC OMGDH-ROM 1 t+2 1

JKKX’17 UC TOMGDH-ROM 1 2 1

Overview of TPASS Solutions
p
a
s
s
w
o
rd
-o
n
ly

Retrieval

26

SECURITY MODELS
for password-based crypto

▪ Old days: security by obscurity

▪ Now: provable security = gold standard in cryptography

▪ Formal security model & formal security proof

▪ Also crucial for higher-level protocols: secure building blocks secure protocol

Provable Security Trust me –
I’m secure!

28

=

Oracle

Server 1

Server n
F

Game-Based (UC) Ideal vs Real

attack

Oracle

▪ Game-based security notions most common

▪ Oracle access to some secret key function

▪ Secure if Adv: Prob[attack] = negligible

▪ User/Password-based cryptography

▪ Adversary has black-box access “to the user”

Challenge: Security Model including the User

29

p ← D

Oracle

K ← KeyGen()

e.g. Enc or
Sign oracle

attack

attack

Model Reality

Passwords chosen at random from known,
independent distribution

People reuse passwords, leak info about
passwords

Honest user always uses correct password Users make typos, “mix” passwords

e.g. Password-
based Enc

If < t+1 servers in SS are corrupt:
(setup, uid, SS)

Else: (setup, uid, pwd, K, SS)

Universal Composability Framework | Canetti’00

▪ Security defined via ideal functionality F – F is “secure-by-design”

z

K

Server 1

Server 2

Server n

F [uid, pwd, K, SS]

If retr-OK from t+1 in SS
& pwd’ = pwd:
Return K

retrieve, uid, pwd’, SR

setup, uid, pwd, K, SS

30

▪ Security defined via ideal functionality F – F is “secure-by-design”

Universal Composability Framework | Canetti’00

31

Real world Ideal world

π

Server 1

Server 2

Server n

Server 1

Server 2

Server n

F

≈

Environment E

▪ Security defined via ideal functionality F – F is “secure-by-design”

▪ Protocol π securely implements F if Adv Sim such that E: REALπ,A,E ≈ IDEALF,S,E

Universal Composability Framework | Canetti’00

Real world Ideal world

π

32

Server 1

Server 2

Server n

Server 1

Server 2

Server n

F

Simulator

≈

Environment E

environment chooses passwords of honest users

→ no assumptions on pwd distributions & typos by honest users covered

pwd pwd

Overview of TPASS Solutions

Scheme Security
Model

Assumption Rounds Exponentiation
User Server

BJSL’11 Game DDH-ROM 3 8t+17 16

CLLN’14 UC DDH-ROM 5 14t+24 7t+28

JKK’14 Game OMGDH-ROM 1 2t+3 3

ACNP’16 Game OMGDH-ROM 1 ? ?

JKKX’16 UC OMGDH-ROM 1 t+2 1

JKKX’17 UC TOMGDH-ROM 1 2 1

p
a
s
s
w
o
r
d
-o
n
ly

All based on OPRFs

Disclaimer: security models vary

Retrieval

33

TPASS by JKKX’17 | Slightly Different Setting

34

Server 1

Server 2

Server n

Server' 1

Server' 2

Server' t+1secret K

user obtains a random key K at setup

if < t+1 servers are corrupt → they don't learn anything about K

if ≥ t+1 servers are corrupt → they learn K (but its still a random key)

[JKKX’17] Jarecki, Kiayias, Krawczyk, Xu. TOPPSS: Cost-Minimal Password-Protected Secret Sharing Based on Threshold OPRF. ACNS 2017

user shares secret K with n servers

protected by password p

user retrieves K from at least t+1 servers

using password p’

secret K
password p

p = p' ?

password p'

secret K

Building Block: Threshold OPRF (T-OPRF)

35

Backend
Server 1

Backend
Server t+1

𝑘1

𝑘2

𝑘𝒕+𝟏

Backend
Server 2

compute 𝑦 = PRF 𝑘, 𝑥 in a blind & distributed threshold manner

s. t. 𝑦 = PRF 𝑘, 𝑥

ҧ𝑥 = Blind(𝑥)

𝑦 = Unblind(ത𝑦)

ത𝑦 = Comb ത𝑦1, ത𝑦2, … , ത𝑦𝒕+𝟏

𝑘 = KGen 𝜏
𝑘1 + 𝑘2 + …+ 𝑘𝑛 = Share 𝑘, 𝒕, 𝑛
any 𝑡 + 1 shares are sufficient to compute PRF(𝑘, 𝑥)

ҧ𝑥

𝑦2 = pPRF 𝑘2, ҧ𝑥

If <t+1 servers are corrupt:

T-OPRF outputs are indistinguisable from random

can only evaluate PRF with help of honest servers

TPASS Protocol | Setup

Server 1

Server 2

Server n

𝑢𝑖𝑑, 𝑘1, 𝑆𝑆

𝑢𝑖𝑑, 𝑘2, 𝑆𝑆

𝑢𝑖𝑑, 𝑘𝑛 , 𝑆𝑆

▪ user obtains secret K protected by password p with n servers SS = S1, S2,...,Sn

𝑘 = PRF. KGen 𝜏
(𝑘1, 𝑘2, … , 𝑘𝑛) = 𝑆ℎ𝑎𝑟𝑒 𝑘, 𝑡, 𝑛

if 𝑎𝑐𝑘 from all 𝑆 in 𝑆𝑆
compute 𝑦 = PRF 𝑘, 𝑝
compute ℎ = H 𝑦
parse ℎ = 𝐶,𝐾

𝑢𝑖𝑑, 𝑝, 𝑆𝑆

36

TPASS Protocol | Setup

Server 1

Server 2

Server n

𝑘 = PRF. KGen 𝜏
(𝑘1, 𝑘2, … , 𝑘𝑛) = 𝑆ℎ𝑎𝑟𝑒 𝑘, 𝑡, 𝑛

if 𝑎𝑐𝑘 from all 𝑆 in 𝑆𝑆
compute 𝑦 = PRF 𝑘, 𝑝
compute ℎ = H 𝑦
parse ℎ = 𝐶,𝐾

send 𝐶 to all 𝑆 & output 𝐾

𝑢𝑖𝑑, 𝑘1, 𝑆𝑆, 𝐶

𝑢𝑖𝑑, 𝑘2, 𝑆𝑆, 𝐶

𝑢𝑖𝑑, 𝑘𝑛 , 𝑆𝑆, 𝐶

𝑢𝑖𝑑, 𝑝, 𝑆𝑆

▪ user obtains secret K protected by password p with n servers SS = S1, S2,...,Sn

37

TPASS Protocol | Setup

Server 1

Server 2

Server n

𝑘 = PRF. KGen 𝜏
(𝑘1, 𝑘2, … , 𝑘𝑛) = 𝑆ℎ𝑎𝑟𝑒 𝑘, 𝑡, 𝑛

if 𝑎𝑐𝑘 from all 𝑆 in 𝑆𝑆
compute 𝑦 = PRF 𝑘, 𝑝
compute ℎ = H 𝑦
parse ℎ = 𝐶,𝐾

send 𝐶 to all 𝑆 & output 𝐾

𝑢𝑖𝑑, 𝑘1, 𝑆𝑆, 𝐶

𝑢𝑖𝑑, 𝑘2, 𝑆𝑆, 𝐶

𝑢𝑖𝑑, 𝑘𝑛 , 𝑆𝑆, 𝐶

𝑢𝑖𝑑, 𝑝, 𝑆𝑆

▪ user obtains secret K protected by password p with n servers SS = S1, S2,...,Sn

38

𝐾 is always a random key
If <t+1 servers are corrupt: Adv learns nothing about 𝑝, 𝐾
If ≥t+1 servers are corrupt: Adv can offline attack 𝑝, 𝐾

▪ user retrieve her secret using password p’ from t+1

servers SR = S'1, S'2,...,S’t+1

TPASS Protocol | Retrieval

Server 1

Server 2

Server t+1

𝑢𝑖𝑑, 𝑘1, 𝑆𝑆, 𝐶

𝑢𝑖𝑑, 𝑘2, 𝑆𝑆, 𝐶

𝑢𝑖𝑑, 𝑘𝑡+1, 𝑆𝑆, 𝐶

each 𝑆𝑖:
check that 𝑆𝑅 ⊂ 𝑆𝑆

compute ഥ𝑦𝑖 = pPRF 𝑘𝑖 , ҧ𝑥

𝑢𝑖𝑑, 𝑝′, 𝑆𝑅

ҧ𝑥 = Blind(𝑝′)

39

▪ user retrieve her secret using password pwd’ from t+1

servers SR = S'1, S'2,...,S’t+1

TPASS Protocol | Retrieval

Server 1

Server 2

Server t+1

𝑢𝑖𝑑, 𝑘1, 𝑆𝑆, 𝐶

𝑢𝑖𝑑, 𝑘2, 𝑆𝑆, 𝐶

𝑢𝑖𝑑, 𝑘𝑡+1, 𝑆𝑆, 𝐶

each 𝑆𝑖:
check that 𝑆𝑅 ⊂ 𝑆𝑆

compute ഥ𝑦𝑖 = pPRF 𝑘𝑖 , ҧ𝑥

ҧ𝑥 = Blind(𝑝′)

if 𝐶, ഥ𝑦𝑖 from all 𝑆 in 𝑆𝑅
compute ത𝑦 = Comb ത𝑦1, ത𝑦2, … , ത𝑦𝑡+1
compute 𝑦 = Unblind(ത𝑦)
compute ℎ = H 𝑦
parse ℎ = 𝐶′, 𝐾′

if 𝐶′ = 𝐶 output 𝐾′

else output 𝐾′ = ⊥

𝑢𝑖𝑑, 𝑝′, 𝑆𝑅

40

Security based on T-OPRF & ROM

Efficient T-OPRF from OMGDH & ROM (similar to our DORPF)

▪ user retrieve her secret using password pwd’ from t+1

servers SR = S'1, S'2,...,S’t+1

TPASS Protocol | Retrieval

Server 1

Server 2

Server t+1

𝑢𝑖𝑑, 𝑘1, 𝑆𝑆, 𝐶

𝑢𝑖𝑑, 𝑘2, 𝑆𝑆, 𝐶

𝑢𝑖𝑑, 𝑘𝑡+1, 𝑆𝑆, 𝐶

each 𝑆𝑖:
check that 𝑆𝑅 ⊂ 𝑆𝑆

compute ഥ𝑦𝑖 = pPRF 𝑘𝑖 , ҧ𝑥

ҧ𝑥 = Blind(𝑝′)

if 𝐶, ഥ𝑦𝑖 from all 𝑆 in 𝑆𝑅
compute ത𝑦 = Comb ത𝑦1, ത𝑦2, … , ത𝑦𝑡+1
compute 𝑦 = Unblind(ത𝑦)
compute ℎ = H 𝑦
parse ℎ = 𝐶′, 𝐾′

if 𝐶′ = 𝐶 output 𝐾′

else output 𝐾′ = ⊥

𝑢𝑖𝑑, 𝑝′, 𝑆𝑅

41

TPASS | Applications

▪ TPASS allows users to reconstruct strong secret key

from weak password

▪ Does not require trusted storage

▪ Allows to bootstrap any cryptographic operation based on a strong key

▪ Encrypted cloud storage, strong authentication, …

▪ Bootstrap strong “passwords” from K, pwd= H(K,”iacr.org”)

▪ Reconstruction of secret key can be security risk – malware on device

▪ Less flexible, but more secure: protocols for joint password-based computations

▪ Number of “solutions”, most are vulnerable against offline attacks 

▪ Distributed signing [CLNS16] – “Virtual Smartcard”

42

Password-Based Crypto | Summary

▪ Passwords are convenient & easy to use

▪ Low entropy makes them vulnerable to offline attacks

▪ Strong security from passwords requires multi-server solutions

▪ Prevents offline attacks & detect online attacks

▪ UC-based definitions capture password use better than game-based models

▪ Highly-efficient solutions exist for a number of password-based primitives

▪ Lots of open research problems – Lets make crypto for people! ☺

43

anj@zurich.ibm.com

Thanks! Questions?

