Introduction to post-quantum cryptography and learning with errors

Douglas Stebila

McMaster University

Funding acknowledgements:

Summer School on real-world crypto and privacy • Šibenik, Croatia • June 11, 2018 https://www.douglas.stebila.ca/research/presentations NSERC CRSNG

Summary

- Intro to post-quantum cryptography
- Learning with errors problems
 - LWE, Ring-LWE, Module-LWE, Learning with Rounding, NTRU
 - Search, decision
 - With uniform secrets, with short secrets
- Public key encryption from LWE
 - Regev
 - Lindner–Peikert
- Security of LWE
 - Lattice problems GapSVP
- KEMs and key agreement from LWE
- Other applications of LWE
- PQ security models
- Transitioning to PQ crypto

Authenticated key exchange + symmetric encyrption

Cryptographic building blocks

Devoret, Schoelkopf. Science 339:1169–1174, March 2013.

"I estimate a 1/7 chance of breaking RSA-2048 by 2026 and a 1/2 chance by 2031."

> — Michele Mosca, November 2015 https://eprint.iacr.org/2015/1075

Quantum Technologies Timeline

http://gurope.eu/system/files/u7/93056 Quantum%20Manifesto WEB.pdf

Post-quantum cryptography in academia

Conference series

- PQCrypto 2006
- PQCrypto 2008
- PQCrypto 2010
- PQCrypto 2011
- PQCrypto 2013
- PQCrypto 2014
- PQCrypto 2016
- PQCrypto 2017
- PQCrypto 2018

Post-quantum cryptography in government

"IAD will initiate a transition to quantum resistant algorithms in the not too distant future."

NSA Information
 Assurance Directorate,
 Aug. 2015

NISTIR 8105

Report on Post-Quantum Cryptography

Lily Chen Stephen Jordan Yi-Kai Liu Dustin Moody Rene Peralta Ray Perlner Daniel Smith-Tone

This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.IR.8105

Apr. 2016

Aug. 2015 (Jan. 2016)

NIST Post-quantum Crypto Project timeline http://www.nist.gov/pqcrypto

December 2016	Formal call for proposals	
November 2017	Deadline for submissions 69 submissions 1/3 signatures, 2/3 KEM/PKE	
3–5 years	Analysis phase	
2 years later (2023–2025)	Draft standards ready	

NIST Post-quantum Crypto Project http://www.nist.gov/pqcrypto

"Our intention is to select a couple of options for more immediate standardization, as well as to eliminate some submissions as unsuitable. ... The goal of the process is not primarily to pick a **winner**, but to document the strengths and weaknesses of the different options, and to analyze the possible tradeoffs among them."

Timeline

Post-quantum crypto

Classical crypto with no known exponential quantum speedup

Quantum-resistant crypto Quantum-safe crypto

Quantum crypto

Quantum key distribution

Quantum random number generators

Quantum channels

Quantum blind computation

Families of post-quantum cryptography

Hash- & symmetric-based

- Can only be used to make signatures, not public key encryption
- Very high confidence in hashbased signatures, but large signatures required for many signature-systems

Code-based

- Long-studied cryptosystems with moderately high confidence for some code families
- Challenges in communication sizes

Multivariate quadratic

Variety of systems with various levels of confidence and trade-offs

Lattice-based

- High level of academic interest in this field, flexible constructions
- Can achieve reasonable communication sizes
- Developing confidence

Elliptic curve isogenies

- Specialized but promising technique
- Small communication, slower computation

Learning with errors problems

Solving systems of linear equations

Linear system problem: given blue, find red

Solving systems of linear equations

Linear system problem: given blue, find red

Learning with errors problem

	rang \mathbb{Z}_1^7	dom /×4 3			$\overset{\text{secret}}{\mathbb{Z}^{4\times 1}_{13}}$	sma	all nc $\mathbb{Z}_{13}^{7 imes 1}$	bise	$\mathbb{Z}_{13}^{7 imes}$
4	1	11	10		6		0		4
5	5	9	5		9		-1		7
3	9	0	10	×	11	+	1	=	2
1	3	3	2		11		1		11
12	7	3	4				1		5
6	5	11	4				0		12
3	3	5	0				-1		8

20

1

Learning with errors problem

Search LWE problem: given blue, find red

Search LWE problem

Let n, m, and q be positive integers. Let χ_s and χ_e be distributions over \mathbb{Z} . Let $\mathbf{s} \stackrel{\$}{\leftarrow} \chi_s^n$. Let $\mathbf{a}_i \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_q^n)$, $e_i \stackrel{\$}{\leftarrow} \chi_e$, and set $b_i \leftarrow \langle \mathbf{a}_i, \mathbf{s} \rangle + e_i \mod q$, for $i = 1, \ldots, m$.

The search LWE problem for $(n, m, q, \chi_s, \chi_e)$ is to find s given $(\mathbf{a}_i, b_i)_{i=1}^m$. In particular, for algorithm \mathcal{A} , define the advantage

$$\mathsf{Adv}_{n,m,q,\chi_s,\chi_e}^{\mathsf{lwe}}(\mathcal{A}) = \Pr\left[\mathbf{s} \stackrel{\$}{\leftarrow} \chi_s^n; \mathbf{a}_i \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_q^n); e_i \stackrel{\$}{\leftarrow} \chi_e; \\ b_i \leftarrow \langle \mathbf{a}_i, \mathbf{s}_i \rangle + e \bmod q : \mathcal{A}((\mathbf{a}_i, b_i)_{i=1}^m) = \mathbf{s})\right]$$

[Regev STOC 2005]

Decision learning with errors problem

Decision LWE problem: given blue, distinguish green from random

Decision LWE problem

Let *n* and *q* be positive integers. Let χ_s and χ_e be distributions over \mathbb{Z} . Let $\mathbf{s} \leftarrow \chi_s^n$. Define the following two oracles:

•
$$O_{\chi_e,\mathbf{s}}: \mathbf{a} \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_q^n), e \stackrel{\$}{\leftarrow} \chi_e; \text{ return } (\mathbf{a}, \langle \mathbf{a}, \mathbf{s} \rangle + e \mod q).$$

•
$$U: \mathbf{a} \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_q^n), u \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_q); \text{ return } (\mathbf{a}, u).$$

The decision LWE problem for (n, q, χ_s, χ_e) is to distinguish $O_{\chi,s}$ from U.

In particular, for algorithm \mathcal{A} , define the advantage

$$\mathsf{Adv}_{n,q,\chi_s,\chi_e}^{\mathsf{dlwe}}(\mathcal{A}) = \left| \Pr(\mathbf{s} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^n : \mathcal{A}^{O_{\chi_e,\mathbf{s}}}() = 1) - \Pr(\mathcal{A}^U() = 1) \right|$$

٠

Search-decision equivalence

- Easy fact: If the search LWE problem is easy, then the decision LWE problem is easy.
- Fact: If the decision LWE problem is easy, then the search LWE problem is easy.
 - Requires ηq calls to decision oracle
 - Intuition: test the each value for the first component of the secret, then move on to the next one, and so on.

Choice of error distribution

- Usually a discrete Gaussian distribution of width s = lpha q for error rate lpha < 1
- Define the Gaussian function

$$o_s(\mathbf{x}) = \exp(-\pi \|\mathbf{x}\|^2 / s^2)$$

The continuous Gaussian distribution has probability density function

$$f(\mathbf{x}) = \rho_s(\mathbf{x}) / \int_{\mathbb{R}^n} \rho_s(\mathbf{z}) d\mathbf{z} = \rho_s(\mathbf{x}) / s^n$$

Short secrets

- The secret distribution χ_s was originally taken to be the uniform distribution
- Short secrets: use $\chi_s = \chi_e$
- There's a tight reduction showing that LWE with short secrets is hard if LWE with uniform secrets is hard.

Toy example versus real-world example

640 × 8 × 15 bits = **9.4 KiB**

$\mathbb{Z}_{13}^{7 imes 4}$					
4	1	11	10		
10	4	1	11		
11	10	4	1		
1	11	10	4		
4	1	11	10		
10	4	1	11		
11	10	4	1		

random

Each row is the cyclic shift of the row above

. . .

$\mathbb{Z}_{13}^{7 \times 4}$				
4	1	11	10	
3	4	1	11	
2	3	4	1	
12	2	3	4	
9	12	2	3	
10	9	12	2	
11	10	9	12	

random -7×4

Each row is the cyclic shift of the row above

with a special wrapping rule: x wraps to $-x \mod 13$.

. . .

Each row is the cyclic shift of the row above

with a special wrapping rule: x wraps to -x mod 13.

So I only need to tell you the first row.

+

=

Ring learning with errors problem

$$\mathbb{Z}_{13}[x]/\langle x^4+1\rangle$$

$$4 + 1x + 11x^{2} + 10x^{3}$$
 random

$$\times \qquad 6 + 9x + 11x^{2} + 11x^{3}$$
 secret

$$+ \qquad 0 - 1x + 1x^{2} + 1x^{3}$$
 small noise

$$= \qquad 10 + 5x + 10x^{2} + 7x^{3}$$

UA

Search ring-LWE problem: given blue, find red

Search ring-LWE problem

Let $R = \mathbb{Z}[X]/\langle X^n + 1 \rangle$, where n is a power of 2.

Let q be an integer, and define $R_q = R/qR$, i.e., $R_q = \mathbb{Z}_q[X]/\langle X^n + 1 \rangle$.

Let χ_s and χ_e be distributions over R_q . Let $s \stackrel{\$}{\leftarrow} \chi_s$. Let $a \stackrel{\$}{\leftarrow} \mathcal{U}(R_q), e \stackrel{\$}{\leftarrow} \chi_e$, and set $b \leftarrow as + e$.

The search ring-LWE problem for (n, q, χ_s, χ_e) is to find s given (a, b).

In particular, for algorithm \mathcal{A} define the advantage

$$\mathsf{Adv}_{n,q,\chi_s,\chi_e}^{\mathsf{rlwe}}(\mathcal{A}) = \Pr\left[s \stackrel{\$}{\leftarrow} \chi_s; a \stackrel{\$}{\leftarrow} \mathcal{U}(R_q); e \stackrel{\$}{\leftarrow} \chi_e; b \leftarrow as + e : \mathcal{A}(a,b) = s\right] \ .$$

[Lyubashesky, Peikert, Regev; EUROCRYPT 2010, JACM 2013]

Decision ring-LWE problem

Let n and q be positive integers. Let χ_s and χ_e be distributions over R_q . Let $s \stackrel{\$}{\leftarrow} \chi_s$. Define the following two oracles:

•
$$O_{\chi_e,s}$$
: $a \stackrel{\$}{\leftarrow} \mathcal{U}(R_q), e \stackrel{\$}{\leftarrow} \chi_e$; return $(a, as + e)$.

•
$$U: a, u \stackrel{\$}{\leftarrow} \mathcal{U}(R_q);$$
 return $(a, u).$

The decision ring-LWE problem for (n, q, χ_s, χ_e) is to distinguish $O_{\chi_e, s}$ from U.

In particular, for algorithm \mathcal{A} , define the advantage

$$\mathsf{Adv}_{n,q,\chi_s,\chi_e}^{\mathsf{drlwe}}(\mathcal{A}) = \left| \Pr(s \stackrel{\$}{\leftarrow} R_q : \mathcal{A}^{O_{\chi_e,s}}() = 1) - \Pr(\mathcal{A}^U() = 1) \right|$$

Module learning with errors problem

every matrix entry is a polynomial in $\mathbb{Z}_q[x]/(x^n+1)$

Search Module-LWE problem: given blue, find red

[Langlois & Stehlé, https://eprint.iacr.org/2012/090, DCC 2015]

Ring-LWE versus Module-LWE

Ring-LWE

4	1	11	10
3	4	1	11
2	3	4	1
12	2	3	4
9	12	2	3
10	9	12	2
11	10	9	12

Module-LWE

Learning with rounding problem

random

=

 $\mathbb{Z}_{13}^{7 \times 1}$ 4
7
2
11

 $\lfloor \cdot \rfloor_p : \mathbb{Z}_q \to \mathbb{Z}_p$: Divide \mathbb{Z}_q into p equal intervals and map x to the index of its interval

Search LWR problem: given blue, find red

[Banerjee, Peikert, Rosen EUROCRYPT 2012]

LWE versus LWR

LWE

 Noise comes from adding an explicit (Gaussian) error term

$$\langle \mathbf{a}, \mathbf{s} \rangle + e$$

LWR

 Noise comes from rounding to a smaller interval

 $\lfloor \langle \mathbf{a}, \mathbf{s} \rangle
floor_p$

 Shown to be as hard as LWE when modulus/error ratio satisfies certain bounds

NTRU problem

For an invertible $s \in R_q^*$ and a distribution χ on R, define $N_{s,\chi}$ to be the distribution that outputs $e/s \in R_q$ where $e \stackrel{\$}{\leftarrow} \chi$.

The **NTRU learning problem** is: given independent samples $a_i \in R_q$ where every sample is distributed according to either: (1) $N_{s,\chi}$ for some randomly chosen $s \in R_q$ (fixed for all samples), or (2) the uniform distribution, distinguish which is the case.

Problems

Learning with errors		
Module-LWE	Search	With uniform secrets
Ring-LWE		
Learning with rounding	Decision	With short secrets
NTRU problem		

Public key encryption from LWE

Public key encryption from LWE Key generation

Public key encryption from LWE Encryption

[Lindner, Peikert. CT-RSA 2011]

Public key encryption from LWE Decryption

Approximately equal shared secret

The sender uses The receiver uses

$$v' = s' (A s + e) + e'' = (s' A + e') s$$

= s' A s + (s' e + e'') = s' A s + (e' s)

≈ s' A s

≈ s' A s

Regev's public key encryption scheme

Let n, m, q, χ be LWE parameters.

- KeyGen(): $\mathbf{s} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^n$. $\mathbf{A} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{m \times n}$. $\mathbf{e} \stackrel{\$}{\leftarrow} \chi(\mathbb{Z}_q^m)$. $\tilde{\mathbf{b}} \leftarrow \mathbf{A}\mathbf{s} + \mathbf{e}$. Return $pk \leftarrow (\mathbf{A}, \mathbf{b})$, $sk \leftarrow \mathbf{s}$.
- Enc($pk, x \in \{0, 1\}$): $\mathbf{s}' \stackrel{\$}{\leftarrow} \{0, 1\}^m$. $\mathbf{b}' \leftarrow \mathbf{s}' \mathbf{A}$. $v' \leftarrow \langle \mathbf{s}', \mathbf{b} \rangle$. $c \leftarrow x \cdot \text{encode}(v')$. Return (\mathbf{b}', c) .
- $\operatorname{Dec}(sk, (\mathbf{b}', c)): v \leftarrow \langle \mathbf{b}', \mathbf{s} \rangle$. Return $\operatorname{decode}(v)$.

$$\operatorname{encode}(x \in \{0, 1\}) \leftarrow x \cdot \left\lfloor \frac{q}{2} \right\rfloor$$
$$\operatorname{decode}(\overline{x} \in \mathbb{Z}_q) \leftarrow \begin{cases} 0, & \text{if } \overline{x} \in \left[-\left\lfloor \frac{q}{4} \right\rfloor, \left\lfloor \frac{q}{4} \right\rfloor\right) \\ 1, & \text{otherwise} \end{cases}$$

[Regev; STOC 2005]

Lindner–Peikert public key encryption

Let n, q, χ be LWE parameters.

- KeyGen(): $\mathbf{s} \stackrel{\$}{\leftarrow} \chi(\mathbb{Z}^n)$. $\mathbf{A} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{n \times n}$. $\mathbf{e} \stackrel{\$}{\leftarrow} \chi(\mathbb{Z}^n)$. $\tilde{\mathbf{b}} \leftarrow \mathbf{A}\mathbf{s} + \mathbf{e}$. Return $pk \leftarrow (\mathbf{A}, \tilde{\mathbf{b}})$ and $sk \leftarrow \mathbf{s}$.
- Enc($pk, x \in \{0, 1\}$): $\mathbf{s}' \stackrel{\$}{\leftarrow} \chi(\mathbb{Z}^n)$. $\mathbf{e}' \stackrel{\$}{\leftarrow} \chi(\mathbb{Z}^n)$. $\mathbf{\tilde{b}}' \leftarrow \mathbf{s}' \mathbf{A} + \mathbf{e}'$. $e'' \stackrel{\$}{\leftarrow} \chi(\mathbb{Z})$. $\tilde{v}' \leftarrow \langle \mathbf{s}', \mathbf{\tilde{b}} \rangle + e''$. $c \leftarrow \text{encode}(x) + \tilde{v}'$. Return $ctxt \leftarrow (\mathbf{\tilde{b}}', c)$.
- $\operatorname{Dec}(sk, (\tilde{\mathbf{b}}', c)): v \leftarrow \langle \tilde{\mathbf{b}}', \mathbf{s} \rangle$. Return $\operatorname{decode}(c v)$.

Sender and receiver approximately compute the same shared secret $\mathbf{s}' \mathbf{As}$

$$\tilde{v}' = \langle \mathbf{s}', \tilde{\mathbf{b}} \rangle + e'' = \mathbf{s}'(\mathbf{A}\mathbf{s} + \mathbf{e}) + e'' = \mathbf{s}'\mathbf{A}\mathbf{s} + \langle \mathbf{s}', \mathbf{e} \rangle + e'' \approx \mathbf{s}'\mathbf{A}\mathbf{s}$$
$$v = \langle \tilde{\mathbf{b}}', \mathbf{s} \rangle = (\mathbf{s}'\mathbf{A} + \mathbf{e}')\mathbf{s} = \mathbf{s}'\mathbf{A}\mathbf{s} + \langle \mathbf{e}', \mathbf{s} \rangle \approx \mathbf{s}'\mathbf{A}\mathbf{s}$$

Difference between Regev and Lindner–Peikert

Regev:

- Bob's public key is $\mathbf{s'A}$ where $\mathbf{s'} \stackrel{\$}{\leftarrow} \{0,1\}^m$
- Encryption mask is $\langle \mathbf{s}', \mathbf{b} \rangle$

Lindner–Peikert:

- Bob's public key is $\mathbf{s'A} + \mathbf{e'}$ where $\mathbf{s'} \stackrel{\$}{\leftarrow} \chi_e$
- Encryption mask is $\langle \mathbf{s}', \mathbf{b} \rangle + e''$

In Regev, Bob's public key is a subset sum instance. In Lindner–Peikert, Bob's public key and encryption mask is just another LWE instance.

IND-CPA security of Lindner–Peikert

Indistinguishable against chosen plaintext attacks

Theorem. If the decision LWE problem is hard, then Lindner–Peikert is IND-CPA-secure. Let n, q, χ be LWE parameters. Let \mathcal{A} be an algorithm. Then there exist algorithms $\mathcal{B}_1, \mathcal{B}_2$ such that

$$\mathsf{Adv}^{\mathsf{ind-cpa}}_{\mathbf{LP}[n,q,\chi]}(\mathcal{A}) \leq \mathsf{Adv}^{\mathsf{dlwe}}_{n,q,\chi}(\mathcal{A} \circ \mathcal{B}_1) + \mathsf{Adv}^{\mathsf{dlwe}}_{n,q,\chi}(\mathcal{A} \circ \mathcal{B}_2)$$

IND-CPA security of Lindner–Peikert

 \rightarrow Decision-LWE \rightarrow $\underline{\text{Game } 0}$: Game 1: \rightarrow Rewrite \rightarrow 1: $\mathbf{A} \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_{q}^{n \times n})$ 1: $\mathbf{A} \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_{a}^{n \times n})$ 2: $\mathbf{s}, \mathbf{e} \stackrel{\$}{\leftarrow} \chi(\mathbb{Z}_a^n)$ 2: $| \tilde{\mathbf{b}} \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_q^n) |$ 3: $\tilde{\mathbf{b}} \leftarrow \mathbf{As} + \mathbf{e}$ 3: $\mathbf{s}', \mathbf{e}' \stackrel{\$}{\leftarrow} \chi(\mathbb{Z}_q^n)$ 4: $\mathbf{s}', \mathbf{e}' \stackrel{\$}{\leftarrow} \chi(\mathbb{Z}_a^n)$ 4: $\tilde{\mathbf{b}}' \leftarrow \mathbf{s}' \mathbf{A} + \mathbf{e}'$ 5: $\tilde{\mathbf{b}}' \leftarrow \mathbf{s}' \mathbf{A} + \mathbf{e}'$ 5: $e'' \stackrel{\$}{\leftarrow} \chi(\mathbb{Z}_q)$ 6: $e'' \stackrel{\$}{\leftarrow} \chi(\mathbb{Z}_q)$ 6: $\tilde{v}' \leftarrow \mathbf{s}'\tilde{\mathbf{b}} + e''$ 7: $\tilde{v}' \leftarrow \mathbf{s}'\tilde{\mathbf{b}} + e''$ 7: $c_0 \leftarrow \text{encode}(0) + \tilde{v}'$ 8: $c_0 \leftarrow \text{encode}(0) + \tilde{v}'$ 8: $c_1 \leftarrow \text{encode}(1) + \tilde{v}'$ 9: $c_1 \leftarrow \text{encode}(1) + \tilde{v}'$ 9: $b^* \stackrel{\$}{\leftarrow} \mathcal{U}(\{0,1\})$ 10: $b^* \stackrel{\$}{\leftarrow} \mathcal{U}(\{0,1\})$ 11: return 10: return $(\mathbf{A}, \tilde{\mathbf{b}}, \tilde{\mathbf{b}}', c_{b^*})$ $(\mathbf{A}, \tilde{\mathbf{b}}, \tilde{\mathbf{b}}', c_{b^*})$

 $\underline{\text{Game } 2}$: 1: $\mathbf{A} \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_{q}^{n \times n})$ 2: $\tilde{\mathbf{b}} \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_{q}^{n})$ 3: $\mathbf{s'} \stackrel{\$}{\leftarrow} \chi(\mathbb{Z}_a^n)$ 4: $|[\mathbf{e}'||e''] \stackrel{\$}{\leftarrow} \chi(\mathbb{Z}_a^{n+1})|$ 5: $[\tilde{\mathbf{b}}' \| \tilde{v}'] \leftarrow \mathbf{s}' [\mathbf{A} \| \tilde{\mathbf{b}}] + [\mathbf{e}' \| e'']$ 6: $\overline{c_0} \leftarrow \text{encode}(0) + \tilde{v}'$ 7: $c_1 \leftarrow \text{encode}(1) + \tilde{v}'$ 8: $b^* \stackrel{\$}{\leftarrow} \mathcal{U}(\{0,1\})$ 9: return $(\mathbf{A}, \tilde{\mathbf{b}}, \tilde{\mathbf{b}}', c_{b^*})$

[Lindner, Peikert; CT-RSA 2011]

 $\underline{\text{Game } 2}$:

IND-CPA security of Lindner–Peikert

 \rightarrow Decision-LWE \rightarrow 1: $\mathbf{A} \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_{a}^{n \times n})$ 2: $\tilde{\mathbf{b}} \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_a^n)$ 3: $\mathbf{s}' \stackrel{\$}{\leftarrow} \chi(\mathbb{Z}_a^n)$ 4: $|[\mathbf{e}'||e''] \stackrel{\$}{\leftarrow} \chi(\mathbb{Z}_q^{n+1})$ 5: $[\tilde{\mathbf{b}}' \| \tilde{v}'] \leftarrow \mathbf{s}' [\mathbf{A} \| \tilde{\mathbf{b}}] + [\mathbf{e}' \| e'']$ 6: $\overline{c_0} \leftarrow \text{encode}(0) + \tilde{v}'$ 7: $c_1 \leftarrow \text{encode}(1) + \tilde{v}'$ 8: $b^* \stackrel{\$}{\leftarrow} \mathcal{U}(\{0,1\})$ 9: return $(\mathbf{A}, \mathbf{b}, \mathbf{b}', c_{b^*})$

$$\underbrace{\text{Game 3:}} \rightarrow \text{Rewrite}$$

$$1: \mathbf{A} \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_q^{n \times n})$$

$$2: \tilde{\mathbf{b}} \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_q^n)$$

$$3: \left[\tilde{\mathbf{b}}' \| \tilde{v}' \right] \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_q^{n+1})$$

$$4: c_0 \leftarrow \text{encode}(0) + \tilde{v}'$$

$$5: c_1 \leftarrow \text{encode}(1) + \tilde{v}'$$

$$6: b^* \stackrel{\$}{\leftarrow} \mathcal{U}(\{0, 1\})$$

$$7: \textbf{return}$$

$$(\mathbf{A}, \tilde{\mathbf{b}}, \tilde{\mathbf{b}}', c_{b^*})$$

1: $\mathbf{A} \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_{a}^{n \times n})$ 2: $\tilde{\mathbf{b}} \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_{q}^{n})$ 3: $[\tilde{\mathbf{b}}' \| \tilde{v}'] \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_a^{n+1})$ 4: $b^* \stackrel{\$}{\leftarrow} \mathcal{U}(\{0,1\})$ 5: return $(\mathbf{A}, \mathbf{b}, \mathbf{b}', \tilde{v}')$

Game 4:

Independent of hidden bit

[Lindner, Peikert; CT-RSA 2011]

Lattice-based KEM/PKEs submitted to NIST

- BabyBear, MamaBear, PapaBear (ILWE)
- CRYSTALS-Kyber (MLWE)
- Ding Key Exchange (RLWE)
- Emblem (LWE, RLWE)
- FrodoKEM (LWE)
- HILA5 (RLWE)
- KCL (MLWE, RLWE)
- KINDI (MLWE)
- LAC (PLWE)
- LIMA (RLWE)
- Lizard (LWE, LWR, RLWE, RLWR)
- Lotus (LWE)
- NewHope (RLWE)
- NTRU Prime (RLWR)
- NTRU HRSS (NTRU)
- NTRUEncrypt (NTRU)
- Round2 (RLWR, LWR)
- Saber (MLWR)
- Titanium (PLWE)

https://estimate-all-the-lwe-ntru-schemes.github.io/docs/

Security of LWE-based cryptography

"Lattice-based"

Hardness of decision LWE – "lattice-based"

worst-case gap shortest vector problem (GapSVP)

poly-time [Regev05, BLPRS13]

average-case decision LWE

Lattices

Let $\mathbf{B} = {\mathbf{b}_1, \mathbf{b}_n} \subseteq \mathbb{Z}_q^{n \times n}$ be a set of linearly independent basis vectors for \mathbb{Z}_q^n . Define the corresponding **lattice**

$$\mathcal{L} = \mathcal{L}(\mathbf{B}) = \left\{ \sum_{i=1}^{n} z_i \mathbf{b}_i : z_i \in \mathbb{Z} \right\}$$
.

(In other words, a lattice is a set of *integer* linear combinations.)

Define the **minimum distance** of a lattice as

$$\lambda_1(\mathcal{L}) = \min_{\mathbf{v} \in \mathcal{L} \setminus \{\mathbf{0}\}} \|\mathbf{v}\|$$
.

Lattices

Discrete additive subgroup of \mathbb{Z}^n

Equivalently, integer linear combinations of a basis

Lattices

There are many bases for the same lattice – some short and orthogonalish, some long and acute.

Closest vector problem

Given some basis for the lattice and a target point in the space, find the closest lattice point.

Shortest vector problem

Given some basis for the lattice, find the shortest non-zero lattice point.

Shortest vector problem

The shortest vector problem (SVP) is: given a basis **B** for some lattice $\mathcal{L} = \mathcal{L}(\mathbf{B})$, find a shortest non-zero vector, i.e., find $\mathbf{v} \in \mathcal{L}$ such that $\|\mathbf{v}\| = \lambda_1(\mathcal{L})$.

The decision approximate shortest vector problem $(\mathsf{GapSVP}_{\gamma})$ is: given a basis **B** for some lattice $\mathcal{L} = \mathcal{L}(\mathbf{B})$ where either $\lambda_1(\mathcal{L}) \leq 1$ or $\lambda_1(\mathcal{L}) > \gamma$, determine which is the case.

Regev's iterative reduction

Theorem. [Reg05] For any modulus $q \leq 2^{\text{poly}(n)}$ and any discretized Gaussian error distribution χ of parameter $\alpha q \geq 2\sqrt{n}$ where $0 < \alpha < 1$, solving the decision LWE problem for $(n, q, \mathcal{U}, \chi)$ with at most m = poly(n) samples is at least as hard as quantumly solving GapSVP_{γ} and SIVP_{γ} on arbitrary *n*dimensional lattices for some $\gamma = \tilde{O}(n/\alpha)$.

The polynomial-time reduction is extremely non-tight: approximately $O(n^{13})$.

Finding short vectors in lattices

LLL basis reduction algorithm

- Finds a basis close to Gram–Schmidt
- Polynomial runtime (in dimension), but basis quality (shortness/orthogonality) is poor

Block Korkine Zolotarev (BKZ) algorithm

- Trade-off between runtime and basis quality
- In practice the best algorithm for cryptographically relevant scenarios

Solving the (approximate) shortest vector problem

The complexity of GapSVP_{γ} depends heavily on how γ and n relate, and get harder for smaller γ .

Algorithm	Time	Approx. factor γ
LLL algorithm various various Sch87	$\operatorname{poly}(n) \ 2^{\Omega(n \log n)} \ 2^{\Omega(n)} \operatorname{time and space} \ 2^{\tilde{\Omega}(n/k)}$	$\begin{array}{c} 2^{\Omega(n\log\log n/\log n)}\\ \operatorname{poly}(n)\\ \operatorname{poly}(n)\\ 2^k \end{array}$
	$P \cap co-NP$ NP-hard	$\frac{2}{\sum_{n \in (1)} \sqrt{n}}$

In cryptography, we tend to use $\gamma \approx n$.

Picking parameters

 Estimate parameters based on runtime of lattice reduction algorithms. • Based on reductions:

- Calculate required runtime for GapSVP or SVP based on tightness gaps and constraints in each reduction
- Pick parameters based on best known GapSVP or SVP solvers or known lower bounds
 - Reductions are typically non-tight (e.g., n¹³);
 would lead to very large parameters
- Based on cryptanalysis:
 - Ignore tightness in reductions.
 - Pick parameters based on best known LWE solvers relying on lattice solvers.

KEMs and key agreement from LWE

Key encapsulation mechanisms (KEMs)

A key encapsulation mechanism (KEM) consists of three algorithms:

- KeyGen() $* \to (pk, sk)$: A key generation algorithm that outputs a public key pk and secret key sk
- Encaps (pk) $*\!\!\!\to (c,k)$ An encapsulation algorithm that outputs a ciphertext c and session key k
- $Decaps(sk, c) \rightarrow k$: A decapsulation algorithm that outputs a session key k (or an error symbol)

Security properties for KEMs: IND-CPA, IND-CCA

Key exchange protocols

- A key exchange protocol is an interactive protocol carried out between two parties.
- The goal of the protocol is to output a session key that is indistinguishable from random.
- In authenticated key exchange protocols, the adversary can be active and controls all communications between parties; the parties are assumed to have authentically distributed trusted long-term keys out of band prior to the protocol.
- In unauthenticated key exchange protocols, the adversary can be passive and only obtains transcripts of communications between honest parties.
- IND-CPA KEMs can be viewed as a two flow unauthenticated key exchange protocol.

Basic LWE key agreement (unauthenticated)

Based on Lindner–Peikert LWE public key encryption scheme

Rounding & reconciliation

- Each coefficient of the polynomial is an integer modulo q
- Treat each coefficient independently
- Send a "reconciliation signal" to help with rounding
- Techniques by Ding [Din12] and Peikert [Pei14]

Basic rounding

- Round either to 0 or q/2
- Treat *q*/2 as 1

This works most of the time: prob. failure 2⁻¹⁰.

Not good enough: we need exact key agreement.

Rounding and reconciliation (Peikert)

[Peikert; PQCrypto 2014]

Rounding and reconciliation (Peikert)

• If $| alice - bob | \le q/8$, then this always works.

[Peikert; PQCrypto 2014]

Exact LWE key agreement (unauthenticated)

shared secret:
round(b's)

shared secret: round(*s'b*)

Exact ring-LWE key agreement (unauthenticated)

shared secret:
round(s • b')

shared secret:
round(b • s')

Public key validation

- No public key validation possible for basic LWE/ring-LWE public keys
- Key reuse in LWE/ring-LWE leads to real attacks following from searchdecision equivalence
 - Comment in [Peikert, PQCrypto 2014]
 - Attack described in [Fluhrer, Eprint 2016]
- Need to ensure usage is okay with just passive security (IND-CPA)
- Or construct actively secure (IND-CCA) KEM/PKE/AKE using Fujisaki– Okamoto transform or quantum-resistant variant [Targhi–Unruh, TCC 2016] [Hofheinz et al., Eprint 2017]

An example: FrodoKEM

- KEM: Key encapsulation mechanism (simplified key exchange protocol)
- Builds on basic (IND-CPA) LWE public key encryption
- Achieves IND-CCA security against adaptive adversaries
 - By applying a quantum-resistant variant of the Fujisaki–Okamoto transform

Negligible error rate

• Simple design:

- Free modular arithmetic (q = 2¹⁶)
- Simple Gaussian sampling
- Parallelizable matrix-vector operations
- No reconciliation
- Simple to code

[Bos, Costello, Ducas, Mironov, Naehrig, Nikolaenko, Raghunathan, Stebila. ACM CCS 2016] [Alkim, Bos, Ducas, Easterbrook, LaMacchia, Longa, Mironov, Naehrig, Nikolaenko, Peikert, Raghunathan, Stebila. FrodoKEM NIST Submission, 2017]

FrodoKEM construction

IND-CPA secure FrodoPKE

FrodoPKE.KeyGen

FrodoPKE.Enc

FrodoPKE.Dec

Algorithm 11 FrodoPKE.Dec.

Input: Ciphertext $c = (\mathbf{C}_1, \mathbf{C}_2) \in \mathbb{Z}_q^{\overline{m} \times n} \times \mathbb{Z}_q^{\overline{m} \times \overline{n}}$ and secret key $sk = \mathbf{S} \in \mathbb{Z}_q^{n \times \overline{n}}$. **Output:** Decrypted message $\mu' \in \mathcal{M}$.

1: Compute $\mathbf{M} = \mathbf{C}_2 - \mathbf{C}_1 \mathbf{S}$ 2: return message $\mu' \in \operatorname{Freedo}.\operatorname{Decode}(\mathbf{M})$

FrodoKEM construction

IND-CPA secure FrodoPKE

FrodoPKE.KeyGen

FrodoPKE.Enc

FrodoPKE.Dec

Targhi–Unruh Quantum Fujisaki–Okamoto (QFO) transform

Adds well-formedness checks Extra hash value Implicit rejection

Requires negligible error rate

IND-CCA secure FrodoKEM

FrodoKEM.KeyGen

FrodoKEM.Encaps

FrodoKEM.Decaps

FrodoKEM parameters

	FrodoKEM-640	FrodoKEM-976
Dimension <i>n</i>	640	976
Modulus q	2 ¹⁵	2 ¹⁶
Error distribution	Approx. Gaussian [-11,, 11], σ = 2.75	Approx. Gaussian [-10,, 10], σ = 2.3
Failure probability	2-148	2 ⁻¹⁹⁹
Ciphertext size	9,736 bytes	15,768 bytes
Estimated security (cryptanalytic)	2 ¹⁴³ classical 2 ¹⁰³ quantum	2 ²⁰⁹ classical 2 ¹⁵⁰ quantum
Runtime	1.1 msec	2.1 msec

Other applications of LWE

- KeyGen(): $\mathbf{s} \stackrel{\$}{\leftarrow} \chi(\mathbb{Z}_q^n)$
- Enc($sk, \mu \in \mathbb{Z}_2$): Pick $\mathbf{c} \in \mathbb{Z}_q^n$ such that $\langle \mathbf{s}, \mathbf{c} \rangle = e \mod q$ where $e \in \mathbb{Z}$ satisfies $e \equiv \mu \mod 2$.
- Dec (sk, \mathbf{c}) : Compute $\langle \mathbf{s}, \mathbf{c} \rangle \in \mathbb{Z}_q$, represent this as $e \in \mathbb{Z} \cap \left[-\frac{q}{2}, \frac{q}{2}\right]$. Return $\mu' \leftarrow e \mod 2$.

 $\mathbf{c}_1 + \mathbf{c}_2$ encrypts $\mu_1 + \mu_2$:

$$\langle \mathbf{s}, \mathbf{c}_1 + \mathbf{c}_2 \rangle = \langle \mathbf{s}, \mathbf{c}_1 \rangle + \langle \mathbf{s}, \mathbf{c}_2 \rangle = e_1 + e_2 \mod q$$

Decryption will work as long as the error $e_1 + e_2$ remains below q/2.

[Brakerski, Vaikuntanathan; FOCS 2011]

Let $\mathbf{c}_1 \otimes \mathbf{c}_2 = (c_{1,i} \cdot c_{2,j})_{i,j} \in \mathbb{Z}_q^{n^2}$ be the tensor product (or Kronecker product).

 $\mathbf{c}_1 \otimes \mathbf{c}_2$ is the encryption of $\mu_1 \mu_2$ under secret key $\mathbf{s} \otimes \mathbf{s}$:

$$\langle \mathbf{s} \otimes \mathbf{s}, \mathbf{c}_1 \otimes \mathbf{c}_2 \rangle = \langle \mathbf{s}, \mathbf{c}_1 \rangle \cdot \langle \mathbf{s}, \mathbf{c}_2 \rangle = e_1 \cdot e_2 \mod q$$

Decryption will work as long as the error $e_1 \cdot e_2$ remains below q/2.

- Error conditions mean that the number of additions and multiplications is limited.
- Multiplication increases the dimension (exponentially), so the number of multiplications is again limited.
- There are techniques to resolve both of these issues.
 - **Key switching** allows converting the dimension of a ciphertext.
 - Modulus switching and bootstrapping are used to deal with the error rate.

Digital signatures [Lyubashevsky 2011]

- KeyGen(): $\mathbf{S} \stackrel{\$}{\leftarrow} \{-d, \dots, 0, \dots, d\}^{m \times k}, A \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{n \times m}, \mathbf{T} \leftarrow \mathbf{AS}.$ Secret key: \mathbf{S} ; public key: $(\mathbf{A}, \mathbf{T}).$
- Sign(S, μ): $\mathbf{y} \stackrel{\$}{\leftarrow} \chi^m$; $\mathbf{c} \leftarrow H(\mathbf{A}\mathbf{y}, \mu)$; $\mathbf{z} \leftarrow \mathbf{S}\mathbf{c} + \mathbf{y}$. With prob. $p(\mathbf{z})$ output (\mathbf{z}, \mathbf{c}) , else restart Sign. "Rejection sampling"
- Vfy((**A**, **T**), μ , (**z**, **c**)): Accept iff $||\mathbf{z}|| \le \eta \sigma \sqrt{m}$ and $\mathbf{c} = H(\mathbf{A}\mathbf{z} \mathbf{T}\mathbf{c}, \mu)$

Lattice-based signature schemes submitted to NIST

- CRYSTALS-Dilithium (MLWE)
- Falcon (NTRU)
- pqNTRUsign (NTRU)
- qTESLA (RLWE)

Post-quantum security models

Post-quantum security models

- Is the adversary quantum?
- If so, at what stage(s) in the security experiment?
- If so, can the adversary interact with honest parties (make queries) quantumly?
- If so, and if the proof is in the random oracle model, can the adversary access the random oracle quantumly?

Public key encryption security models

IND-CCA

A is classical

 $\mathrm{Exp}_{\Pi}^{\mathrm{ind-cca}}(\mathcal{A})$

- 1. $(pk, sk) \leftarrow \text{s KeyGen}()$
- 2. $(m_0, m_1, st) \leftarrow \mathcal{A}^{\operatorname{Enc}(pk, \cdot), \operatorname{Dec}(sk, \cdot)}(pk)$
- 3. $b \leftarrow * \{0, 1\}$
- 4. $c^* \leftarrow \text{sEnc}(pk, m_b)$
- 5. $b' \leftarrow \mathcal{A}^{\operatorname{Enc}(pk,\cdot),\operatorname{Dec}(sk,\cdot \neq c^*)}(st,c^*)$

Quantum security models

- "Future quantum"
 - A is quantum in line 5 but always has only classical access to Enc and Dec
- "Post-quantum"
 - A is quantum in lines 2 and 5 but always has only classical access to Enc & Dec
- "Fully quantum"
 - A is quantum in lines 2 and 5 and has quantum (superposition) access to Enc and Dec

Symmetric crypto generally quantum-resistant, unless in fully quantum security models. [Kaplan et al., CRYPTO 2016]

Quantum random oracle model

- If the adversary is locally quantum (e.g., future quantum, post-quantum), should the adversary be able to query its random oracle quantumly?
 - No: We imagine the adversary only interacting classically with the honest system.
 - Yes: The random oracle model artificially makes the adversary interact with something (a hash function) that can implement itself in practice, so the adversary could implement it quantumly.
 - QROM seems to be prevalent these days
- Proofs in QROM often introduce tightness gap
 - QROM proofs of Fujisaki–Okamoto transform from IND-CPA PKE to IND-CCA PKE very hot topic right now

Transitioning to PQ crypto

Retroactive decryption

- A passive adversary that records today's communication can decrypt once they get a quantum computer
 - Not a problem for some scenarios
 - Is a problem for other scenarios

 How to provide potential post-quantum security to early adopters?

Hybrid ciphersuites

- Use pre-quantum and post-quantum algorithms together
- Secure if either one remains unbroken

Need to consider backward compatibility for non-hybridaware systems

Why hybrid?

- Potential post-quantum security for early adopters
- Maintain compliance with older standards (e.g. FIPS)

 Reduce risk from uncertainty on PQ assumptions/parameters

Hybrid ciphersuites

	Key exchange	Authentication
1	Hybrid traditional + PQ	Single traditional Likely focus for next 10 years
2	Hybrid traditional + PQ	Hybrid traditional + PQ
3	Single PQ	Single traditional
4	Single PQ	Single PQ

Hybrid post-quantum key exchange

TLS 1.2

- Prototypes and software experiments:
 - Bos, Costello, Naehrig, Stebila, S&P 2015
 - Bos, Costello, Ducas, Mironov, Naehrig, Nikolaenko, Raghunathan, Stebila, ACM CCS 2016
 - Google Chrome experiment
 - <u>https://security.googleblog.com/2016/07/experime</u> <u>nting-with-post-quantum.html</u>
 - <u>https://www.imperialviolet.org/2016/11/28/cecpq1.</u>
 <u>html</u>
 - liboqs OpenSSL fork
 - <u>https://openquantumsafe.org/</u>
 - Microsoft OpenVPN fork
 - <u>https://www.bleepingcomputer.com/news/microsof</u> t/microsoft-adds-post-quantum-cryptography-to-

TLS 1.3

- Prototypes:
 - liboqs OpenSSL fork
 - <u>https://github.com/open-quantum-safe/ope</u> <u>nssl/tree/OQS-master</u>
- Internet drafts:
 - Whyte et al.
 - <u>https://tools.ietf.org/html/draft-whyte-qsh-t</u> <u>ls13-06</u>
 - Shank and Stebila
 - <u>https://tools.ietf.org/html/draft-schanck-tls</u>
 <u>-additional-keyshare-00</u>

Hybrid signatures

X.509 certificates

- How to convey multiple public keys & signatures in a single certificate?
- Proposal: second certificate in X.509 extension
- Experimental study of backward compatibility

Theory

- Properties of different combiners for multiple signature schemes
- Hierarchy of security notions based on quantumness of adversary

OPEN QUANTUM SAFE

software for prototyping quantum-resistant cryptography

Open Quantum Safe Project

https://openguantumsafe.org/, https://github.com/open-guantum-safe/

Summary

Summary

- Intro to post-quantum cryptography
- Learning with errors problems
 - LWE, Ring-LWE, Module-LWE, Learning with Rounding, NTRU
 - Search, decision
 - With uniform secrets, with short secrets
- Public key encryption from LWE
 - Regev
 - Lindner–Peikert
- Security of LWE
 - Lattice problems GapSVP
- KEMs and key agreement from LWE
- Other applications of LWE
- PQ security models
- Transitioning to PQ crypto

- Post-Quantum Cryptography by Bernstein, Buchmann, Dahmen
- A Decade of Lattice Cryptography by Chris Peikert <u>https://web.eecs.umich.edu/~cpeikert/pubs/lattice-survey.pdf</u>
- NIST Post-quantum Cryptography Project <u>http://nist.gov/pqcrypto</u>