Analysis of pseudorandom sequences

Viktória Tóth
Eötvös Loránd University, Budapest, Hungary
Department of Computer Algebra

Summer School on Real-world Crypto and Privacy
June 5–9, 2017
Sibenik, Croatia
Introduction

New, constructive approach

Collision and avalanche effect
 - definitions
 - analysis of constructions

Results

Conclusion
Pseudorandomness:
- numerical analysis, pure mathematics, cryptography
- keystream in Vernam-cipher:

\[m + k = c \]

New, constructive approach:
Mauduit and Sárközy, 1996
Advantages:

1. More constructive
2. No use unproved hypothesis
3. Describe the single sequences
4. Apriori testing
5. Characterizing with real-valued function
 \[\Rightarrow \text{ comparableness} \]
Measures
For a given sequence $E_N = (e_1, ..., e_N) \in \{-1, +1\}^N$ the correlation measure of order k of E_N is:

$$C_k(E_N) = \max_{M,D} \left| \sum_{n=0}^{M-1} e_{n+d_1} e_{n+d_2} ... e_{n+d_k} \right|,$$

where the maximum is taken over all $D = (d_1, ..., d_k)$ ($d_1 < ... < d_k$ are nonnegative integers) and $M \in \mathbb{N}$ with $M + d_k \leq N$.
Well-distribution measure of E_N is:

$$W(E_N) = \max_{a,b,t} \left| \sum_{j=1}^{t} e^{a+jb} \right|,$$

where the maximum is taken over all $a \in \mathbb{Z}$, b, $t \in \mathbb{N}$ and $1 \leq a + b \leq a + tb \leq N$.
\(E_N \) is considered a \textbf{good} pseudorandom sequence, if both \(C_k(E_N) \) and \(W(E_N) \) are "small" in terms of \(N \).

This terminology is justified:
Cassaigne, Mauduit and Sárközy (2002):
for almost all \(E_N = \{-1, +1\}^N \) truly random sequence
both measures are small:
\(O(N^{1/2}(\log N)^c) \)
Main topic of my research:
collisions and avalanche effect

Important in applications: e.g. DES

S is a given set
Assume that $N \in \mathbb{N}$, S is a given set and to each $s \in S$ we assign a unique binary sequence

$$E_N = E_N(s) = (e_1, \ldots, e_N) \in \{-1, +1\}^N,$$

and let $\mathcal{F} = \mathcal{F}(S)$ denote the family of the binary sequences obtained in this way:

$$\mathcal{F} = \mathcal{F}(S) = \{E_N(s) : s \in S\}. \quad (1)$$
Definition 1
If \(s \in \mathcal{S}, s' \in \mathcal{S}, s \neq s' \) and
\[
E_N(s) = E_N(s'),
\]
then (2) is said to be a collision in \(\mathcal{F} = \mathcal{F}(\mathcal{S}) \).

If there is no collision in \(\mathcal{F} = \mathcal{F}(\mathcal{S}) \), then \(\mathcal{F} \) is said to be collision free.

In other words, \(\mathcal{F} = \mathcal{F}(\mathcal{S}) \) is collision free if we have
\[
|\mathcal{F}| = |\mathcal{S}|.
\]
An ideally good family of pseudorandom binary sequences is collision free.

If \mathcal{F} is not collision free but the number of collisions is limited \implies they do not cause many problems.

A good measure of the number of collisions is the following:
Definition 2

The collision maximum \(M = M(\mathcal{F}, S) \) is defined by

\[
M = M(\mathcal{F}, S) = \max_{E_N \in \mathcal{F}} |\{ s : s \in S, E_N(s) = E_N \}|
\]

(i.e., \(M \) is the maximal number of elements of \(S \) representing the same binary sequence \(E_N \)).
Definition 3

If in (1) we have $S = \{-1, +1\}^l$, and for any $s \in S$, changing any element of s changes “many” elements of $E_N(s)$ (i.e., for $s \neq s'$ many elements of the sequences $E_N(s)$ and $E_N(s')$ are different), then we speak about avalanche effect, and we say that $F = F(S)$ possesses the avalanche property.

If for any $s \in S, s' \in S, s \neq s'$ at least $(\frac{1}{2} - o(1))N$ elements of $E_N(s)$ and $E_N(s')$ are different then F is said to possess strict avalanche property.
To study the avalanche property, I introduced the following measure:

Definition 4

If $N \in \mathbb{N}$, $E_N = (e_1, \ldots, e_N) \in \{-1, 1\}^N$ and $E'_N = (e'_1, \ldots, e'_N) \in \{-1, 1\}^N$, then the **distance** $d(E_N, E'_N)$ between E_N and E'_N is defined by

$$d(E_N, E'_N) = \left| \{n : 1 \leq n \leq N, e_n \neq e'_n\} \right|.$$

Moreover, if \mathcal{F} is a family of form (1), then the **distance minimum** $m(\mathcal{F})$ of \mathcal{F} is defined by

$$m(\mathcal{F}) = \min_{s,s' \in S, \ s \neq s'} d(E_N(s), E_N(s')).$$
Applying this notion we may say that

the family \mathcal{F} is collision free $\iff m(\mathcal{F}) > 0$,

and \mathcal{F} possesses the strict avalanche property if

$$m(\mathcal{F}) \geq \left(\frac{1}{2} - o(1) \right) \cdot N.$$
A good candidate for testing the measures of pseudorandomness is the **Legendre symbol**:

\[
\left(\frac{a}{p} \right) = \begin{cases}
0, & \text{if } p \mid a \\
+1, & \text{if } a \text{ quadratic residue mod } p \\
-1, & \text{if } a \text{ nonquadratic residue mod } p
\end{cases}
\]

- its random behaviour is known for long
 (Jacobstahl, Davenport, Bach, Peralta, Damgard, Sárközy)
Mauduit and Sárközy, 1997:

\[e_n = \left(\frac{n}{p} \right) \quad (n = 1, 2, \ldots, p - 1) \]

Goubin, Mauduit and Sárközy, 2004:

\[e_n = \begin{cases} \left(\frac{f(n)}{p} \right), & \text{if } (f(n), p) = 1 \\ +1, & \text{if } p | f(n). \end{cases} \quad (3) \]
Theorem 1 (VTóth)

Let S be the set of polynomials $f(x) \in \mathbb{F}_p[X]$ of degree $D \geq 2$ which do not have multiple zeros. Define $E_p = E_p(f) = (e_1, \ldots, e_p)$ by (3) and $\mathcal{F} = \mathcal{F}(S)$ by (1). Then we have

$$m(\mathcal{F}) \geq \frac{1}{2} \left(p - (2D - 1)p^{1/2} - 2D \right).$$

The proof is based on the theorem of Weil.
Corollary 1 (VTóth)

If S, \mathcal{F} are defined as in Theorem 1 and we also have $D < \frac{p^{1/2}}{2}$, then \mathcal{F} is collision free.

Corollary 2 (VTóth)

If S, \mathcal{F} are defined as in Theorem 1 and we have $p \rightarrow +\infty$, $D = o(p^{1/2})$ then \mathcal{F} possesses the strong avalanche property.
Mauduit, Rivat and Sárközy introduced the following construction in 2004:

Let \(p \) be an odd prime number, \(f(X) \in \mathbb{F}_p[X] \), and define \(E_p = (e_1, \ldots, e_p) \) by

\[
e_n =
\begin{cases}
+1, & \text{if } 0 \leq r_p(f(n)) < p/2 \\
-1, & \text{if } p/2 \leq r_p(f(n)) < p,
\end{cases}
\]

where \(r_p(n) \) denotes the unique \(r \in \{0, \ldots, p - 1\} \) such that \(n \equiv r \pmod{p} \).
Advantages:
- small measures
- fast

Disadvantages:
- correlation measure of large order can be large (Mauduit, Rivat and Sárközy)
- there are ”many” collisions in it
"Many" collisions:

\[S_k = \{ f(x) : f(x) \in \mathbb{F}_p[x], \deg f(x) = k \} \]

\[\mathcal{F}_k = \{ E_p(f) = (e_1, ..., e_p) : f \in S_k \} \]

If

\[\frac{k}{p(\log p)^{-1}} \to \infty, \]

then

\[M(\mathcal{F}_k, S_k) \to \infty. \]

Theorem 2 (VTóth)

*If \(p \) is a fixed prime and \(\mathcal{F}_2, S_2 \) are defined as above then we have \(M(\mathcal{F}_2, S_2) \geq \lfloor \frac{1}{6} \log p \rfloor. \)
It can be saved:

\[\mathcal{P}_d = \{ f(x) \in \mathbb{F}_p[x] : f(x) = \sum_{i=0}^{d} a_i x^i, \text{ahol } a_0 = 0, a_d = 1 \} \]

Theorem 3 (VTóth)

If \(f(x) \in \mathcal{P}_d \), then the family of binary sequences constructed by (4) is collision free and possesses the strict avalanche property.
Java programme by Viktória Fonyó

- Goal: testing the constructions in the "real life"
 - generation of the sequences: fast
 - calculation of the measures: comparing with other constructions
 - using the sequences in Vernam cipher
- Result: they can be used easily and in a fast way in applications as well
Conclusion

- **large families** of binary sequences with strong pseudorandom properties

- mathematically **provable** nice properties

- can be used in **applications**

