Two ways of building round functions for block ciphers

Joan Daemen

Radboud University

Šibenik summer school 2016
Outline

1. Block ciphers and statistical attacks
2. Correlation basics
3. Wide trail strategy: strongly-aligned flavor
4. Wide trail strategy: weakly-aligned flavor
5. Conclusions
Outline

1. Block ciphers and statistical attacks
2. Correlation basics
3. Wide trail strategy: strongly-aligned flavor
4. Wide trail strategy: weakly-aligned flavor
5. Conclusions
Product cipher [Claude Shannon, 1949] and SPN
Iterated block ciphers [DES and later]
Statistical attacks

- Exploits *Distinguisher* Ω over $r - 1$ rounds
- Two phases:
 - online: get many (C_i, P_i)
 - offline: guess k_a
- Wrong guess destroys Ω
- Basic attacks
 - DC: requires $1/DP$ couple
 - LC: requires $1/C^2$ couples
- Many variants ...
Statistical attacks

- Exploits *Distinguisher* Ω over $r - 1$ rounds
- Two phases:
 - online: get many (C_i, P_i)
 - offline: guess k_a
- Wrong guess destroys Ω
- Basic attacks
 - DC: requires $1/DP$ couple
 - LC: requires $1/C^2$ couples
- Many variants ...
Exploits *Distinguisher* Ω over $r - 1$ rounds

Two phases:
- online: get many (C_i, P_i)
- offline: guess k_a

Wrong guess destroys Ω

Basic attacks
- DC: requires $1/DP$ couple
- LC: requires $1/C^2$ couples

Many variants ...
Statistical attacks

- Exploits *Distinguisher* Ω over $r - 1$ rounds
- Two phases:
 - online: get many (C_i, P_i)
 - offline: guess k_a
- Wrong guess destroys Ω
- Basic attacks
 - DC: requires $1/DP$ couple
 - LC: requires $1/C^2$ couples
- Many variants ...
Distinguisher: difference propagation

- **Differential trail:** $\text{DP}(Q) \approx \prod_i \text{DP}(\text{Sbox}_i)$ and $w(Q) = \sum_i w(\text{Sbox}_i)$
- **Differential:** $\text{DP}(\Delta p, \Delta a) = \sum_{\Delta p \rightarrow Q \rightarrow \Delta a} \text{DP}(Q)$
Distinguisher: difference propagation

- Differential trail: $\text{DP}(Q) \approx \prod_i \text{DP}(\text{Sbox}_i)$ and $w(Q) = \sum_i w(\text{Sbox}_i)$
- Differential: $\text{DP}(\Delta_p, \Delta_a) = \sum_{\Delta_p \rightarrow Q \rightarrow \Delta_a} \text{DP}(Q)$
Outline

1. Block ciphers and statistical attacks
2. Correlation basics
3. Wide trail strategy: strongly-aligned flavor
4. Wide trail strategy: weakly-aligned flavor
5. Conclusions
Boolean function

- Mapping from $GF(2^n)$ to $GF(2)$
- Input is a vector $x = (x_1, x_2, \ldots, x_n)$
- Algebraic expression:
 \[
 y = x_1x_2 + x_1x_3x_4 + x_2x_4 + 1
 \]
- Truth table: 2^n bit array or vector:

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>y</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
Correlation basics

Correlation between two Boolean functions:

\[C(f, g) = 2\Pr (f(x) = g(x)) - 1 \]

Real-valued counterpart of a Boolean function:

\[\hat{f}(x) = (-1)^{f(x)} \]

We define an inner product:

\[<\hat{f}, \hat{g}> = \sum_x \hat{f}(x)\hat{g}(x) \]

...and norm \[||\hat{f}|| = \sqrt{<\hat{f}, \hat{f}>} \]

The correlation now becomes

\[C(f, g) = \frac{<\hat{f}, \hat{g}>}{||\hat{f}|| \cdot ||\hat{g}||} \]
Correlation between Boolean functions geometrically

\[C(f, g) = \cos \alpha \]

Vector space: \(\mathbb{R}^{2^n} \)
Linear functions and selection vectors

- Linear Boolean function with *mask* w: $w^T x$
- If $u \neq v$: $\langle (-1)^{u^T x}, (-1)^{v^T x} \rangle = 0$
- Linear functions form an orthogonal basis of \mathbb{R}^{2^n}

\[
\begin{array}{cccccccccccc}
 x_0 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 & x_9 & x_{10} & x_{11} \\
 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
\end{array}
\]

\[w^T x: \quad x_1 + x_4 + x_5 + x_8\]
Spectrum of a Boolean function

We can represent $\hat{f}(x)$ with respect to the basis of linear functions:

$$\hat{f}(x) = \sum_{w} F(w)(-1)^{w^T x}$$

with coordinates given by:

$$F(w) = 2^{-n} \sum_{x} \hat{f}(x)(-1)^{w^T x}$$

- This is called the Walsh-Hadamard transform $F(w) = \mathcal{W}(f(x))$
- So simply: $F(w) = C(f(x), w^T x)$
- Orthogonal transformation in \mathbb{R}^{2^n}
- Consequence: Parseval’s Theorem $\sum F(w)^2 = 1$
Adding Boolean functions in GF(2)

- Let \(h(x) = f(x) + g(x) \)
- From \(\hat{h}(x) = \hat{f}(x)\hat{g}(x) \) follows \(H(w) = \sum_v F(v + w)G(v) \)

- Spectrum of sum equals convolution of spectra

- Special cases:
 - Constant function: \(g(x) = 1 \): \(H(w) = -F(w) \)
 - Linear function: \(g(x) = u^T x \): \(H(w) = F(w + u) \)
 - Disjunct functions \(f \) and \(g \): \(H(v + w) = F(v)G(w) \)
Let $h(x) = f(x)g(x)$. Then:

$$\hat{h}(x) = \frac{1}{2} \left(1 + \hat{f}(x) + \hat{g}(x) - \hat{f}(x)\hat{g}(x) \right)$$

From this it follows

$$\mathcal{W}(fg) = \frac{1}{2} (\delta(w) + \mathcal{W}(f) + \mathcal{W}(g) + \mathcal{W}(f + g))$$

with $\delta(w) = 1$ iff $w = 0$
Correlation basics

Correlation matrices [Daemen 1994]

- \(m \)-bit vector Boolean function: \(h(x) = (h_1(x), h_2(x) \ldots h_m(x)) \)
- Correlation matrix \(C^h \):
 - \(2^m \) rows and \(2^n \) columns
 - element at row \(u \), column \(v \): \(C(u^T h(x), v^T x) \)
- Homomorphism:
 \[
 \begin{pmatrix}
 x \\
 \L
 \end{pmatrix}
 \xrightarrow{h}
 \begin{pmatrix}
 y = h(x) \\
 \L
 \end{pmatrix}
 \]
 \(X \) with \(X_u = (-1)^{x^T u} \)
 \[
 \begin{pmatrix}
 X \\
 \L
 \end{pmatrix}
 \xrightarrow{C^h}
 \begin{pmatrix}
 Y = C^h X \\
 \L
 \end{pmatrix}
 \]
- If \(h \) is permutation: \(C^{(h^{-1})} = (C^h)^{-1} = (C^h)^T \)
Correlation basics

Correlation matrices of special functions

- Adding a constant: \(f(x) = x + k \)

 \[
 C_{u,u} = (-1)^{u^T k} \quad \text{and} \quad C_{u,v \neq u} = 0
 \]

- Linear function: \(f(x) = Mx \)

 \[
 C_{u,w} = 1 \iff M^T u = w \quad \text{and} \quad 0 \quad \text{otherwise}
 \]

- Parallel composition: \(b = (b_1, b_2, \ldots) = (h_1(a_1), h_2(a_2), \ldots) = h(a) \)

 \[
 C_{u,w}^{(h)} = \prod_i C_{u(i),w(i)}^{(h_i)}
 \]

 - If \(w_i = 0 \) then \(C_{u(i),w(i)}^{(h_i)} = 1 \)
 - \(C_{u,w}^{(h)} \) is product of correlation over active S-boxes
Correlation matrices: serial composition

\[(g \circ f)(u, v) = \sum_w c^{(g)}(u, w)c^{(f)}(w, v) \]
Linear trails and correlation

- Linear trail: $C_p(Q) = \prod_i C(Sbox_i)$
- Correlation: $C(u^T \beta(a), w^T a) = \sum_{w \rightarrow Q \rightarrow u} C_p(Q)$
Outline

1. Block ciphers and statistical attacks
2. Correlation basics
3. Wide trail strategy: strongly-aligned flavor
4. Wide trail strategy: weakly-aligned flavor
5. Conclusions
Replacing the permutation in SPN by a mixing layer
Reverting the permutation in SPN by a mixing layer
Mixing layer criterion: Branch number B
Mixing layer criterion: Branch number B
Mixing layer criterion: Branch number \mathcal{B}
Mixing layer and error-correcting codes
Mixing layer and error-correcting codes
Wide trail strategy: strongly-aligned flavor

β active S-boxes in each sequence of 2 rounds
Recursion: four-round theorem

$B_1 \times B_2$ active S-boxes per 4 rounds
Recursion: four-round theorem

\[B_1 \times B_2 \text{ active S-boxes per 4 rounds} \]
Recursion: four-round theorem

$B_1 \times B_2$ active S-boxes per 4 rounds
Recursion: four-round theorem

$B_1 \times B_2$ active S-boxes per 4 rounds
Wide trail strategy: strongly-aligned flavor

Rijndael [Daemen, Rijmen 1998]

- Trails: 25 active S-boxes per 4 rounds
- Clustering of trails but not alarming
- Costly S-box and mixing
- Byte-alignment leads to structural properties
Outline

1. Block ciphers and statistical attacks
2. Correlation basics
3. Wide trail strategy: strongly-aligned flavor
4. Wide trail strategy: weakly-aligned flavor
5. Conclusions
Some years earlier: 3-WAY and BASEKING [Daemen 1993-1994]

- Only bitwise instructions and shifts
- 4-layer round function alternated with key addition
 - θ mixing
 - π_1 transposition 1: shifts of words
 - γ non-linear
 - π_2 transposition 2: shifts of words
- Additional θ at the end
- Round key $=$ cipher key \oplus round constant
- Cipher and inverse same, mod round constants and word order
- 96-bit (3-WAY) and 192-bit (BASEKING) ciphers
The γ S-box

<table>
<thead>
<tr>
<th>x</th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>100</th>
<th>110</th>
<th>101</th>
<th>011</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>111</td>
<td>010</td>
<td>100</td>
<td>001</td>
<td>011</td>
<td>110</td>
<td>101</td>
<td>000</td>
</tr>
</tbody>
</table>

- χ of KECCAK, complemented: $y_j = x_i + 1 + (x_{i+1} + 1)x_{i+2}$
- Differentially uniform: all differentials have probability $1/4$
- Uniform correlation: all correlations have amplitude $1/2$
- Positions of non-zero correlations and differentials coincide
The mixing layer θ: operates on 12-bit slices

$$M_\theta = \begin{pmatrix} 1 & 1 & . & . & . & 1 & 1 & . & 1 & 1 & 1 \\ 1 & 1 & 1 & . & . & 1 & 1 & . & 1 & 1 \\ 1 & 1 & 1 & 1 & . & . & 1 & 1 & . & 1 \\ . & 1 & 1 & 1 & 1 & . & . & 1 & 1 \\ 1 & . & 1 & 1 & 1 & 1 & . & . & 1 & . \\ 1 & 1 & . & 1 & 1 & 1 & 1 & . & . & . \\ . & 1 & 1 & . & 1 & 1 & 1 & 1 & . & . \\ . & . & 1 & 1 & . & 1 & 1 & 1 & 1 & . \\ . & . & . & 1 & 1 & . & 1 & 1 & 1 & 1 \\ 1 & . & . & . & 1 & 1 & . & 1 & 1 & 1 \\ . & 1 & . & . & . & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Orthogonal: $M_\theta^{-1} = M_\theta^T$, so differences and masks propagate same way
Diffusion properties of θ

| $|y| \backslash |x|$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | - | - | - | - | - | - | 12 | - | - | - | - |
| 2 | - | - | - | - | - | 60 | - | - | - | 6 | - |
| 3 | - | - | - | - | 180 | - | - | - | 40 | - | - |
| 4 | - | - | - | 255 | - | - | - | 240 | - | - | - |
| 5 | - | - | 180 | - | - | 600 | - | - | - | 12 | - |
| 6 | - | 60 | - | - | 804 | - | - | - | 60 | - | - |
| 7 | 12 | - | - | 600 | - | - | - | 180 | - | - | - |
| 8 | - | - | 240 | - | - | - | 255 | - | - | - | - |
| 9 | - | - | 40 | - | - | 180 | - | - | - | - | - |
| 10 | - | 6 | - | - | 60 | - | - | - | - | - | - |
| 11 | - | - | - | 12 | - | - | - | - | - | - | - |

- (Hamming weight) branch number $B = 8$
- implies a $[24, 12, 8]$ code: the binary extended Golay code
Resulting block ciphers

- Two instances:
 - 3-WAY: 96-bit block and key
 - BASEKING: 192-bit block and key

- Symmetry
 - equivalence of differential and linear trails
 - propagation ← same als → with order of bits permuted

- Implementation
 - small number of operations per bit
 - same circuit for cipher and inverse
 - suitable for bit-slice
NOEKEON [Daemen, Peeters, Rijmen and Van Assche, 2000]

- **Block cipher**
 - 128-bit blocks
 - 128-bit keys
 - security claim: PRP $2^{-128} \mu N$

- Porting of 3-WAY to 128 bits

See http://gro.noekeon.org/
The NOEKEON state

- Two-dimensional $4 \times \ell$ array
 - 4 rows
 - ℓ columns
- Additional partitioning of the state: slices
 - $\ell/4$ slices
- $\ell = 32$
Round transformation

- γ: nonlinear layer
 - 4-bit S-box operating on columns
 - Involution

- θ: combines mixing layer and round key addition
 - Linear 16-bit mixing layer operating on slices
 - Involution

- π: dispersion between slices
 - Rotation of bits within ℓ-bit rows
 - Two instances that are each other's inverse

- i: round constant addition for asymmetry
The round and its inverse

- **Round:** \(\pi_2 \circ \gamma \circ \pi_1 \circ \theta[k] \)
- **Inverse round:**
 - \(\theta[k]^{-1} \circ \pi_1^{-1} \circ \gamma^{-1} \circ \pi_2^{-1} \)
 - \(\theta[k] \circ \pi_2 \circ \gamma \circ \pi_1 \)

- \(\theta[k] \) as final transformation:
 - Regrouping: round of inverse cipher = cipher round
 - round constants prevent involution

- **NOEKEON:** 16 rounds and a final transformation
 - Inverse cipher equal to cipher itself
 - Asymmetry provided by round constants only
Wide trail strategy: weakly-aligned flavor

Nonlinear layer γ

Two identical nonlinear steps with a linear step in between
Mixing layer θ

High average diffusion and low cost
Mixing layer θ cont’d

- Branch number B only 4 due to symmetry
- Invariant sparse states in kernel, e.g.:

```
  0  0  0  0
  0  0  0  0
  0  0  1  0
  0  0  0  0
  0  0  0  0
  0  0  0  0
```
Transposition steps π

- π_1 and π_2 are each others inverses
Trail bounds

- Bounds on 4-round trails
 - Differential trails: probability $\leq 2^{-48}$
 - Linear trails: correlation squared $\leq 2^{-48}$

- *rounds over more than 11 rounds are unusable*

- Powerful bounds thanks to
 - High average diffusion in θ and π
 - Kernel addressed in γ S-box

- Determining bounds:
 - Non-trivial exercise but one-time effort
 - See http://gro.noekeon.org/Noekeon-spec.pdf
Lightweight aspect

- Round function: 5 XOR, 1 AND/OR per bit
 - Compare to AES: 16 XOR, 5 AND per bit

- Hardware
 - \# gates: [640 – 1050] XOR, 64 AND, 64 NOR, 128 MUX
 - Gate delay: 7 XOR, 1 AND, 1 MUX
 - Coprocessor architecture: speed/area trade-off

- Software: e.g. numbers for ARM7:
 - code size 332 bytes, 44.5 cycles/byte
 - code size 3688 bytes, 30 cycles/byte
 - RAM usage: everything in registers

- Cipher and inverse are equal: re-use of circuit and code
Outline

1. Block ciphers and statistical attacks
2. Correlation basics
3. Wide trail strategy: strongly-aligned flavor
4. Wide trail strategy: weakly-aligned flavor
5. Conclusions
Conclusions

- Wide trail strategy is a way to design round functions
- Strong alignment
 - simple proofs for trail weights
 - other distinguishers more likely
- Weak alignment
 - proofs for trail weights require computer assistance
 - other distinguishers less likely