# Two ways of building round functions for block ciphers 

Joan Daemen<br>Radboud University

Šibenik summer school 2016

## Outline

1 Block ciphers and statistical attacks

2 Correlation basics

3 Wide trail strategy: strongly-aligned flavor

4 Wide trail strategy: weakly-aligned flavor

5 Conclusions

## Outline

## 1 Block ciphers and statistical attacks

## 2 Correlation basics

3 Wide trail strategy: strongly-aligned flavor

4 Wide trail strategy: weakly-aligned flavor

5 Conclusions

## Product cipher [Claude shannon, 1949] and SPN



## Iterated block ciphers [DES and later)



## Statistical attacks

■ Exploits Distinguisher $\Omega$ over $r-1$ rounds
■ Two phases:
■ online: get many ( $C_{i}, P_{i}$ )

- offline: guess $k_{a}$

■ Wrong guess destroys $\Omega$
■ Basic attacks

- DC: requires $1 / D P$ couple
- LC: requires $1 / C^{2}$ couples

■ Many variants ...


## Statistical attacks

■ Exploits Distinguisher $\Omega$ over $r-1$ rounds
■ Two phases:
■ online: get many ( $C_{i}, P_{i}$ )

- offline: guess $k_{a}$

■ Wrong guess destroys $\Omega$
■ Basic attacks

- DC: requires $1 / D P$ couple
- LC: requires $1 / C^{2}$ couples

■ Many variants ...


## Statistical attacks

■ Exploits Distinguisher $\Omega$ over $r-1$ rounds
■ Two phases:
■ online: get many ( $C_{i}, P_{i}$ )

- offline: guess $k_{a}$

■ Wrong guess destroys $\Omega$
■ Basic attacks

- DC: requires $1 / D P$ couple
- LC: requires $1 / C^{2}$ couples

■ Many variants ...


## Statistical attacks

■ Exploits Distinguisher $\Omega$ over $r-1$ rounds
■ Two phases:
■ online: get many ( $C_{i}, P_{i}$ )

- offline: guess $k_{a}$

■ Wrong guess destroys $\Omega$
■ Basic attacks

- DC: requires $1 / D P$ couple
- LC: requires $1 / C^{2}$ couples

■ Many variants ...


## Distinguisher: difference propagation



■ Differential trail: $\operatorname{DP}(Q) \approx \prod_{i} \mathrm{DP}\left(\right.$ Sbox $\left._{i}\right)$ and $w(Q)=\sum_{i} w\left(\right.$ Sbox $\left._{i}\right)$
■ Differential: $\operatorname{DP}\left(\Delta_{p}, \Delta_{a}\right)=\sum_{\Delta_{p} \rightarrow Q \rightarrow \Delta_{a}} \operatorname{DP}(Q)$

## Distinguisher: difference propagation



- Differential trail: $\mathrm{DP}(\mathrm{Q}) \approx \prod_{i} \mathrm{DP}\left(\mathrm{Sbox}_{i}\right)$ and $w(\mathrm{Q})=\sum_{i} w\left(\right.$ Sbox $\left._{i}\right)$
- Differential: $\operatorname{DP}\left(\Delta_{p}, \Delta_{a}\right)=\sum_{\Delta_{p} \rightarrow Q \rightarrow \Delta_{a}} \operatorname{DP}(Q)$


## Outline

## 1 Block ciphers and statistical attacks

2 Correlation basics

3 Wide trail strategy: strongly-aligned flavor

4 Wide trail strategy: weakly-aligned flavor

5 Conclusions

## Boolean function

■ Mapping from $\operatorname{GF}\left(2^{n}\right)$ to $G F(2)$
■ Input is a vector $x=\left(x_{1}, x_{2}, \ldots x_{n}\right)$
■ Algebraic expression:

$$
y=x_{1} x_{2}+x_{1} x_{3} x_{4}+x_{2} x_{4}+1
$$

■ Truth table: $2^{n}$ bit array or vector:

| $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $y$ | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $y$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 |
| 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 |
| 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 |
| 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
| 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |

## Correlation between two Boolean functions

$$
C(f, g)=2 \operatorname{Pr}(f(x)=g(x))-1
$$

Real-valued counterpart of a Boolean function:

$$
\hat{f}(x)=(-1)^{f(x)}
$$

We define an inner product:

$$
<\hat{f}, \hat{g}>=\sum_{x} \hat{f}(x) \hat{g}(x)
$$

... and norm $\|\hat{f}\|=\sqrt{<\hat{f}, \hat{f}>}$
The correlation now becomes

$$
C(f, g)=\frac{\langle\hat{f}, \hat{g}>}{\|\hat{f}\| \cdot\|\hat{g}\|}
$$

## Correlation between Boolean functions geometrically



$$
C(f, g)=\cos \alpha
$$

Vector space: $\mathbb{R}^{2^{n}}$

## Linear functions and selection vectors

- Linear Boolean function with mask $w: w^{\top} x$

■ If $u \neq v:\left\langle(-1)^{u^{\top} x},(-1)^{v^{\top} x}\right\rangle=0$

- Linear functions form an orthogonal basis of $\mathbb{R}^{2^{n}}$

| $x$ : | $x_{0}$ | $\chi_{1}$ | $x_{2}$ | $x_{3}$ | $X_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ | $x_{8}$ | $x_{9}$ | $x_{10}$ | $x_{11}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $w$ : | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| $w^{\top} x$ : |  | $\chi_{1}$ |  |  |  | $x_{5}$ |  |  | $x_{8}$ |  |  |  |

## Spectrum of a Boolean function

We can represent $\hat{f}(x)$ with respect to the basis of linear functions:

$$
\hat{f}(x)=\sum_{w} F(w)(-1)^{w^{\top} x}
$$

with coordinates given by:

$$
F(w)=2^{-n} \sum_{x} \hat{f}(x)(-1)^{w^{\top} x}
$$

- This is called the Walsh-Hadamard transform $F(w)=\mathcal{W}(f(x))$
- So simply: $F(w)=C\left(f(x), w^{\top} x\right)$
- Orthogonal transformation in $\mathbb{R}^{2^{n}}$
- Consequence: Parseval's Theorem $\sum F(w)^{2}=1$


## Adding Boolean functions in GF(2)

■ Let $h(x)=f(x)+g(x)$

- From $\hat{h}(x)=\hat{f}(x) \hat{g}(x)$ follows $H(w)=\sum_{v} F(v+w) G(v)$

■ Spectrum of sum equals convolution of spectra
■ Special cases:
■ Constant function: $g(x)=1: H(w)=-F(w)$

- Linear function: $g(x)=u^{\top} x: H(w)=F(w+u)$
- Disjunct functions $f$ and $g: H(v+w)=F(v) G(w)$


## Multiplying Boolean functions in GF(2)

Let $h(x)=f(x) g(x)$. Then:

$$
\hat{h}(x)=\frac{1}{2}(1+\hat{f}(x)+\hat{g}(x)-\hat{f}(x) \hat{g}(x))
$$

From this it follows

$$
\mathcal{W}(f g)=\frac{1}{2}(\delta(w)+\mathcal{W}(f)+\mathcal{W}(g)+\mathcal{W}(f+g))
$$

with $\delta(w)=1$ iff $w=0$

## Correlation matrices [Daemen 1994]

■ m-bit vector Boolean function: $h(x)=\left(h_{1}(x), h_{2}(x) \ldots h_{m}(x)\right)$

- Correlation matrix $C^{h}$ :
- $2^{m}$ rows and $2^{n}$ columns
- element at row $u$, column $v: C\left(u^{\top} h(x), v^{\top} x\right)$

■ Homomorphism:

$$
x \quad h \quad y=h(x)
$$

$$
\Uparrow \mathcal{L}
$$

$$
\Uparrow \mathcal{L}
$$

$X$ with $X_{u}=(-1)^{x^{\top} u} \quad C^{(h)} \quad Y=C^{(h)} X$

■ If $h$ is permutation: $C^{\left(h^{-1}\right)}=\left(C^{(h)}\right)^{-1}=\left(C^{(h)}\right)^{\top}$

## Correlation matrices of special functions

■ Adding a constant: $f(x)=x+k$

$$
C_{u, u}=(-1)^{u^{\top} k} \text { and } C_{u, v \neq u}=0
$$

■ Linear function: $f(x)=M x$

$$
C_{u, w}=1 \text { iff } M^{\top} u=w \text { and } 0 \text { otherwise }
$$

■ Parallel composition: $b=\left(b_{1}, b_{2}, \ldots\right)=\left(h_{1}\left(a_{1}\right), h_{2}\left(a_{2}\right), \ldots\right)=h(a)$

$$
C_{u, w}^{(h)}=\prod_{i} C_{u_{(i)}, w_{(i)}}^{\left(h_{i}\right)}
$$

- If $w_{i}=0$ then $C_{u_{(i)}, w_{(i)}}^{\left(h_{i}\right)}=1$
- $C_{u, w}^{(h)}$ is product of correlation over active $S$-boxes


## Correlation matrices: serial composition

$$
\begin{aligned}
& a \longrightarrow f(a) \xrightarrow{g} \quad g(f(a)) \\
& \Uparrow \mathcal{L} \\
& A \xrightarrow{C^{(f)}} C^{(f)} A \xrightarrow{C^{(g)}} C^{(g)} C^{(f)} A \\
& C^{(g \circ f)}(u, v)=\sum_{w} C^{(g)}(u, w) C^{(f)}(w, v)
\end{aligned}
$$

## Linear trails and correlation



- Linear trail: $\mathrm{C}_{\mathrm{p}}(Q)=\prod_{i} C\left(\right.$ Sbox $\left._{i}\right)$

■ Correlation: $C\left(u^{\top} \beta(a), w^{\top} a\right)=\sum_{w \rightarrow Q \rightarrow u} C_{p}(Q)$

## Outline

## 1 Block ciphers and statistical attacks

## 2 Correlation basics

3 Wide trail strategy: strongly-aligned flavor

4 Wide trail strategy: weakly-aligned flavor

5 Conclusions

## Replacing the permutation in SPN by a mixing layer



## Replacing the permutation in SPN by a mixing layer



Mixing layer criterion: Branch number $\mathcal{B}$


Mixing layer criterion: Branch number $\mathcal{B}$


Mixing layer criterion: Branch number $\mathcal{B}$


Mixing layer and error-correcting codes


|  | S | s |  | S | S | s | S |  | S | S | s | S | S ${ }^{\text {S }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Mixing layer and error-correcting codes



## $\mathcal{B}$ active $S$-boxes in each sequence of 2 rounds



## Recursion: four-round theorem


$\mathcal{B}_{1} \times \mathcal{B}_{2}$ active S -boxes per 4 rounds

## Recursion: four-round theorem


$\mathcal{B}_{1} \times \mathcal{B}_{2}$ active S -boxes per 4 rounds

## Recursion: four-round theorem


$\mathcal{B}_{1} \times \mathcal{B}_{2}$ active S -boxes per 4 rounds

## Recursion: four-round theorem


$\mathcal{B}_{1} \times \mathcal{B}_{2}$ active S -boxes per 4 rounds

## Rijndael [Daemen, Rijmen 1998]



■ Trails: 25 active S-boxes per 4 rounds
■ Clustering of trails but not alarming
$\square$ Costly S-box and mixing
■ Byte-alignment leads to structural properties

## Outline

## 1 Block ciphers and statistical attacks

2 Correlation basics

3 Wide trail strategy: strongly-aligned flavor

4 Wide trail strategy: weakly-aligned flavor

## 5 Conclusions

## Some years earlier: 3-WAY and BASEKING [Daemen 1993-1994]

■ Only bitwise instructions and shifts

- 4-layer round function alternated with key addition
$\theta$ mixing
$\pi_{1}$ transposition 1: shifts of words
$\gamma$ non-linear
$\pi_{2}$ transposition 2: shifts of words
- Additional $\theta$ at the end

■ Round key $=$ cipher key $\oplus$ round constant

- Cipher and inverse same, mod round constants and word order
- 96-bit (3-WAY) and 192-bit (BASEKING) ciphers


## The $\gamma \mathrm{S}$-box

| $x$ | 000 | 001 | 010 | 100 | 110 | 101 | 011 | 111 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 111 | 010 | 100 | 001 | 011 | 110 | 101 | 000 |

■ $\chi$ of КЕССАК, complemented: $y_{i}=x_{i}+1+\left(x_{i+1}+1\right) x_{i+2}$
■ Differentially uniform: all differentials have probability $1 / 4$
■ Uniform correlation: all correlations have amplitude 1/2
■ Positions of non-zero correlations and differentials coincide

## The mixing layer $\theta$ : operates on 12-bit slices

$$
M_{\theta}=\left(\begin{array}{cccccccccccc}
1 & . & 1 & . & . & . & 1 & 1 & . & 1 & 1 & 1 \\
1 & 1 & . & 1 & . & . & . & 1 & 1 & . & 1 & 1 \\
1 & 1 & 1 & . & 1 & . & . & . & 1 & 1 & . & 1 \\
1 & 1 & 1 & 1 & . & 1 & . & . & . & 1 & 1 & . \\
. & 1 & 1 & 1 & 1 & . & 1 & . & . & . & 1 & 1 \\
1 & . & 1 & 1 & 1 & 1 & . & 1 & . & . & . & 1 \\
1 & 1 & . & 1 & 1 & 1 & 1 & . & 1 & . & . & . \\
. & 1 & 1 & . & 1 & 1 & 1 & 1 & . & 1 & . & . \\
. & . & 1 & 1 & . & 1 & 1 & 1 & 1 & . & 1 & . \\
. & . & . & 1 & 1 & . & 1 & 1 & 1 & 1 & . & 1 \\
1 & . & . & . & 1 & 1 & . & 1 & 1 & 1 & 1 & . \\
. & 1 & . & . & . & 1 & 1 & . & 1 & 1 & 1 & 1
\end{array}\right)
$$

Orthogonal: $M_{\theta}^{-1}=M_{\theta}^{\top}$, so differences and masks propagate same way

## Diffusion properties of $\theta$

| $\|y\| \backslash\|x\|$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | - | - | - | - | - | - | 12 | - | - | - | - |
| 2 | - | - | - | - | - | 60 | - | - | - | 6 | - |
| 3 | - | - | - | - | 180 | - | - | - | 40 | - | - |
| 4 | - | - | - | 255 | - | - | - | 240 | - | - | - |
| 5 | - | - | 180 | - | - | - | 600 | - | - | - | 12 |
| 6 | - | 60 | - | - | - | 804 | - | - | - | 60 | - |
| 7 | 12 | - | - | - | 600 | - | - | - | 180 | - | - |
| 8 | - | - | - | 240 | - | - | - | 255 | - | - | - |
| 9 | - | - | 40 | - | - | - | 180 | - | - | - | - |
| 10 | - | 6 | - | - | - | 60 | - | - | - | - | - |
| 11 | - | - | - | - | 12 | - | - | - | - | - | - |

- (Hamming weight) branch number $\mathcal{B}=8$

■ implies a $[24,12,8]$ code: the binary extended Golay code

## Resulting block ciphers

■ Two instances:
■ 3-WAY: 96-bit block and key

- BASEKING: 192-bit block and key

■ Symmetry

- equivalence of differential and linear trails

■ propagation $\leftarrow$ same als $\rightarrow$ with order of bits permuted

- Implementation
- small number of operations per bit
- same circuit for cipher and inverse
- suitable for bit-slice


## NOEKEON [Daemen, Peeters, Rijmen and Van Assche, 2000]

■ Block cipher

- 128-bit blocks
- 128-bit keys
- security claim: PRP $2^{-128} \mu \mathrm{~N}$

■ Porting of 3-WAY to 128 bits

See http://gro.noekeon.org/

## The Noekeon state



- Two-dimensional $4 \times \ell$ array
- 4 rows
- $\ell$ columns

■ Additional partitioning of the state: slices

- $\ell / 4$ slices

■ $\ell=32$

## Round transformation

■ $\gamma$ : nonlinear layer

- 4-bit S-box operating on columns
- Involution

■ $\theta$ : combines mixing layer and round key addition
■ Linear 16-bit mixing layer operating on slices

- Involution

■ $\pi$ : dispersion between slices

- Rotation of bits within $\ell$-bit rows
- Two instances that are each others inverse
- $t$ : round constant addition for asymmetry


## The round and its inverse

■ Round: $\pi_{2} \circ \gamma \circ \pi_{1} \circ \theta[k]$
■ Inverse round:
■ $\theta[k]^{-1} \circ \pi_{1}^{-1} \circ \gamma^{-1} \circ \pi_{2}^{-1}$

- $\theta[k] \circ \pi_{2} \circ \gamma \circ \pi_{1}$
$■ \theta[k]$ as final transformation:
- Regrouping: round of inverse cipher = cipher round
- round constants prevent involution
- Noekeon: 16 rounds and a final transformation

■ Inverse cipher equal to cipher itself

- Asymmetry provided by round constants only


## Nonlinear layer $\gamma$



Two identical nonlinear steps with a linear step in between

## Mixing layer $\theta$



High average diffusion and low cost

## Mixing layer $\theta$ cont'd

■ Branch number $\mathcal{B}$ only 4 due to symmetry
■ Invariant sparse states in kernel, e.g.:


## Transposition steps $\pi$



■ $\pi_{1}$ and $\pi_{2}$ are each others inverses

## Trail bounds

- Bounds on 4-round trails
- Differential trails: probability $\leq 2^{-48}$
- Linear trails: correlation squared $\leq 2^{-48}$

■ rounds over more than 11 rounds are unusable
■ Powerful bounds thanks to

- High average diffusion in $\theta$ and $\pi$
- Kernel addressed in $\gamma$ S-box

■ Determining bounds:
■ Non-trivial exercise but one-time effort
■ See http://gro.noekeon.org/Noekeon-spec.pdf

## Lightweight aspect

■ Round function: 5 XOR, 1 AND/OR per bit
■ Compare to AES: 16 XOR, 5 AND per bit

- Hardware

■ \# gates: [640-1050] XOR, 64 AND, 64 NOR, 128 MUX

- Gate delay: 7 XOR, 1 AND, 1 MUX
- Coprocessor architecture: speed/area trade-off

■ Software: e.g. numbers for ARM7:
■ code size 332 bytes, 44.5 cycles/byte

- code size 3688 bytes, 30 cycles/byte
- RAM usage: everything in registers

■ Cipher and inverse are equal: re-use of circuit and code

## Outline

## 1 Block ciphers and statistical attacks

2 Correlation basics

3 Wide trail strategy: strongly-aligned flavor

4 Wide trail strategy: weakly-aligned flavor

5 Conclusions

## Conclusions

■ Wide trail strategy is a way to design round functions
■ Strong alignment

- simple proofs for trail weights
- other distinguishers more likely

■ Weak alignment

- proofs for trail weights require computer assistance
- other distinguishers less likely

