Two ways of building round functions for block ciphers

Joan Daemen

Radboud University

Šibenik summer school 2016

Outline

- 1 Block ciphers and statistical attacks
- 2 Correlation basics
- 3 Wide trail strategy: strongly-aligned flavor
- 4 Wide trail strategy: weakly-aligned flavor
- 5 Conclusions

Outline

1 Block ciphers and statistical attacks

2 Correlation basics

- 3 Wide trail strategy: strongly-aligned flavor
- 4 Wide trail strategy: weakly-aligned flavor

5 Conclusions

Iterated block ciphers [DES and later]

- Exploits Distinguisher Ω over r-1 rounds
- Two phases:
 - online: get many (*C_i*, *P_i*)
 - offline: guess k_a
- Wrong guess destroys Ω
- Basic attacks
 - DC: requires 1/DP couple
 - LC: requires 1/C² couples
- Many variants ...

- Exploits Distinguisher Ω over r-1 rounds
- Two phases:
 - online: get many (*C_i*, *P_i*)
 - offline: guess k_a
- Wrong guess destroys Ω
- Basic attacks
 - DC: requires 1/DP couple
 - LC: requires 1/C² couples
- Many variants ...

- Exploits Distinguisher Ω over r-1 rounds
- Two phases:
 - online: get many (*C_i*, *P_i*)
 - offline: guess k_a
- Wrong guess destroys Ω
- Basic attacks
 - DC: requires 1/DP couple
 - LC: requires 1/C² couples
- Many variants ...

- Exploits Distinguisher Ω over r-1 rounds
- Two phases:
 - online: get many (*C_i*, *P_i*)
 - offline: guess k_a
- Wrong guess destroys Ω
- Basic attacks
 - DC: requires 1/DP couple
 - LC: requires 1/C² couples
- Many variants ...

Distinguisher: difference propagation

Differential trail: $DP(Q) \approx \prod_i DP(Sbox_i)$ and $w(Q) = \sum_i w(Sbox_i)$ Differential: $DP(\Delta_p, \Delta_a) = \sum_{\Delta_p \to Q \to \Delta_a} DP(Q)$

Distinguisher: difference propagation

Differential trail: $DP(Q) \approx \prod_i DP(Sbox_i)$ and $w(Q) = \sum_i w(Sbox_i)$ Differential: $DP(\Delta_p, \Delta_a) = \sum_{\Delta_n \to Q \to \Delta_a} DP(Q)$

Outline

1 Block ciphers and statistical attacks

2 Correlation basics

3 Wide trail strategy: strongly-aligned flavor

4 Wide trail strategy: weakly-aligned flavor

5 Conclusions

Boolean function

- Mapping from $GF(2^n)$ to GF(2)
- Input is a vector $x = (x_1, x_2, \dots, x_n)$
- Algebraic expression:

$$y = x_1 x_2 + x_1 x_3 x_4 + x_2 x_4 + 1$$

Truth table: 2^{*n*} bit array or *vector*:

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	y	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	y
0	0	0	0	1	0	0	0	1	1
1	0	0	0	1	1	0	0	1	1
0	1	0	0	1	0	1	0	1	0
1	1	0	0	0	1	1	0	1	1
0	0	1	0	1	0	0	1	1	1
1	0	1	0	1	1	0	1	1	0
0	1	1	0	1	0	1	1	1	0
1	1	1	0	0	1	1	1	1	1

Correlation between two Boolean functions

$$C(f,g) = 2\Pr\left(f(x) = g(x)\right) - 1$$

Real-valued counterpart of a Boolean function:

$$\hat{f}(\mathbf{x}) = (-\mathbf{1})^{f(\mathbf{x})}$$

We define an inner product:

$$<\hat{f},\hat{g}>=\sum_{x}\hat{f}(x)\hat{g}(x)$$

...and norm $||\hat{f}|| = \sqrt{\langle \hat{f}, \hat{f} \rangle}$ The correlation now becomes

$$C(f,g) = rac{\langle \hat{f}, \hat{g} \rangle}{||\hat{f}|| \cdot ||\hat{g}||}$$

Correlation between Boolean functions geometrically

Vector space: \mathbb{R}^{2^n}

Linear functions and selection vectors

• Linear Boolean function with mask w: $w^T x$

• If
$$u \neq v$$
: $< (-1)^{u^T x}$, $(-1)^{v^T x} >= 0$

• Linear functions form an orthogonal basis of \mathbb{R}^{2^n}

x:

$$x_0$$
 x_1
 x_2
 x_3
 x_4
 x_5
 x_6
 x_7
 x_8
 x_9
 x_{10}
 x_{11}

 w:
 0
 1
 0
 0
 1
 1
 0
 0
 0
 0

 $w^Tx:$
 x_1
 +
 $x_4 + x_5$
 +
 x_8
 x_8

Spectrum of a Boolean function

We can represent $\hat{f}(x)$ with respect to the basis of linear functions:

$$\hat{f}(x) = \sum_{w} F(w) (-1)^{w^{\mathsf{T}} x}$$

with coordinates given by:

$$F(w) = 2^{-n} \sum_{x} \hat{f}(x) (-1)^{w^{\mathsf{T}}x}$$

- This is called the Walsh-Hadamard transform F(w) = W(f(x))
- So simply: $F(w) = C(f(x), w^{T}x)$
- Orthogonal transformation in ${\mathbb R}^{2^n}$
- Consequence: Parseval's Theorem $\sum F(w)^2 = 1$

Adding Boolean functions in GF(2)

• Let
$$h(x) = f(x) + g(x)$$

From $\hat{h}(x) = \hat{f}(x)\hat{g}(x)$ follows $H(w) = \sum_{v} F(v+w)G(v)$

- Spectrum of sum equals convolution of spectra
- Special cases:
 - Constant function: g(x) = 1 : H(w) = -F(w)
 - Linear function: $g(x) = u^{T}x : H(w) = F(w+u)$
 - Disjunct functions f and g: H(v + w) = F(v)G(w)

Multiplying Boolean functions in GF(2)

Let h(x) = f(x)g(x). Then:

$$\hat{h}(x) = \frac{1}{2} \left(1 + \hat{f}(x) + \hat{g}(x) - \hat{f}(x)\hat{g}(x) \right)$$

From this it follows

$$\mathcal{W}(fg) = \frac{1}{2} \left(\delta(w) + \mathcal{W}(f) + \mathcal{W}(g) + \mathcal{W}(f+g) \right)$$

with $\delta(w) = 1$ iff w = 0

Correlation matrices [Daemen 1994]

- *m*-bit vector Boolean function: $h(x) = (h_1(x), h_2(x) \dots h_m(x))$
- Correlation matrix *C*^{*h*}:
 - 2^m rows and 2ⁿ columns
 - element at row *u*, column *v*: $C(u^Th(x), v^Tx)$
- Homomorphism:

$$x \xrightarrow{h} y = h(x)$$

$$\stackrel{\text{(x)}}{\oplus} \mathcal{L} \qquad \qquad \stackrel{\text{(x)}}{\oplus} \mathcal{L}$$

$$X \text{ with } X_u = (-1)^{x^T u} \xrightarrow{C^{(h)}} Y = C^{(h)} X$$

• If *h* is permutation: $C^{(h^{-1})} = (C^{(h)})^{-1} = (C^{(h)})^{\mathsf{T}}$

Correlation matrices of special functions

Adding a constant: f(x) = x + k

$$C_{u,u} = (-1)^{u^{\mathsf{T}}k}$$
 and $C_{u,v \neq u} = 0$

• Linear function:
$$f(x) = Mx$$

 $C_{u,w} = 1$ iff $M^{T}u = w$ and 0 otherwise

Parallel composition: $b = (b_1, b_2, ...) = (h_1(a_1), h_2(a_2), ...) = h(a)$

$$C_{u,w}^{(h)} = \prod_i C_{u_{(i)},w_{(i)}}^{(h_i)}$$

Correlation matrices: serial composition

$$C^{(g\circ f)}(u,v) = \sum_{w} C^{(g)}(u,w) C^{(f)}(w,v)$$

Linear trails and correlation

■ Linear trail: $C_p(Q) = \prod_i C(Sbox_i)$ ■ Correlation: $C(u^T\beta(a), w^Ta) = \sum_{w \to Q \to u} C_p(Q)$

Outline

- 1 Block ciphers and statistical attacks
- 2 Correlation basics
- 3 Wide trail strategy: strongly-aligned flavor
- 4 Wide trail strategy: weakly-aligned flavor
- 5 Conclusions

Replacing the permutation in SPN by a mixing layer

Replacing the permutation in SPN by a mixing layer

Mixing layer criterion: Branch number \mathcal{B}

Mixing layer criterion: Branch number \mathcal{B}

Mixing layer criterion: Branch number \mathcal{B}

Mixing layer and error-correcting codes

Mixing layer and error-correcting codes

${\cal B}$ active S-boxes in each sequence of 2 rounds

 $\mathcal{B}_1 \times \mathcal{B}_2$ active S-boxes per 4 rounds

 $\mathcal{B}_1 \times \mathcal{B}_2$ active S-boxes per 4 rounds

 $\mathcal{B}_1 \times \mathcal{B}_2$ active S-boxes per 4 rounds

 $\mathcal{B}_1 \times \mathcal{B}_2$ active S-boxes per 4 rounds

Rijndael [Daemen, Rijmen 1998]

- Trails: 25 active S-boxes per 4 rounds
- Clustering of trails but not alarming
- Costly S-box and mixing
- Byte-alignment leads to structural properties

Outline

- 1 Block ciphers and statistical attacks
- 2 Correlation basics
- 3 Wide trail strategy: strongly-aligned flavor
- 4 Wide trail strategy: weakly-aligned flavor
- 5 Conclusions

Some years earlier: 3-WAY and BASEKING [Daemen 1993-1994]

- Only bitwise instructions and shifts
- 4-layer round function alternated with key addition
 - θ mixing
 - π_1 transposition 1: shifts of words
 - γ non-linear
 - π_2 transposition 2: shifts of words
- Additional θ at the end
- Round key = cipher key \oplus round constant
- Cipher and inverse same, mod round constants and word order
- 96-bit (3-WAY) and 192-bit (BASEKING) ciphers

The γ S-box

x	000	001	010	100	110	101	011	111
у	111	010	100	001	011	110	101	000

- χ of Keccak, complemented: $y_i = x_i + 1 + (x_{i+1} + 1)x_{i+2}$
- Differentially uniform: all differentials have probability 1/4
- Uniform correlation: all correlations have amplitude 1/2
- Positions of non-zero correlations and differentials coincide

The mixing layer θ : operates on 12-bit slices

Orthogonal: $M_{\theta}^{-1} = M_{\theta}^{T}$, so differences and masks propagate same way

Diffusion properties of θ

$ y \setminus x $	1	2	3	4	5	6	7	8	9	10	11
1	-	-	-	-	-	-	12	-	-	-	-
2	-	-	-	-	-	60	-	-	-	6	-
3	-	-	-	-	180	-	-	-	40	-	-
4	-	-	-	255	-	-	-	240	-	-	-
5	-	-	180	-	-	-	600	-	-	-	12
6	-	60	-	-	-	804	-	-	-	60	-
7	12	-	-	-	600	-	-	-	180	-	-
8	-	-	-	240	-	-	-	255	-	-	-
9	-	-	40	-	-	-	180	-	-	-	-
10	-	6	-	-	-	60	-	-	-	-	-
11	-	-	-	-	12	-	-	-	-	-	-

(Hamming weight) branch number B = 8
implies a [24, 12, 8] code: the binary extended Golay code

Resulting block ciphers

Two instances:

- 3-WAY: 96-bit block and key
- BASEKING: 192-bit block and key
- Symmetry
 - equivalence of differential and linear trails
 - propagation \leftarrow same als \rightarrow with order of bits permuted
- Implementation
 - small number of operations per bit
 - same circuit for cipher and inverse
 - suitable for bit-slice

NOEKEON [Daemen, Peeters, Rijmen and Van Assche, 2000]

- Block cipher
 - 128-bit blocks
 - 128-bit keys
 - security claim: PRP $2^{-128}\mu N$
- Porting of 3-WAY to 128 bits

See http://gro.noekeon.org/

The NOEKEON state

Two-dimensional 4 $\times \ell$ array

- 4 rows
- ℓ columns
- Additional partitioning of the state: slices
 - l/4 slices

Round transformation

- γ : nonlinear layer
 - 4-bit S-box operating on columns
 - Involution
- θ : combines mixing layer and round key addition
 - Linear 16-bit mixing layer operating on slices
 - Involution
- π : dispersion between slices
 - Rotation of bits within *l*-bit rows
 - Two instances that are each others inverse
- ι: round constant addition for asymmetry

The round and its inverse

- **Round:** $\pi_2 \circ \gamma \circ \pi_1 \circ \theta[k]$
- Inverse round:
 - $\bullet \ \theta[k]^{-1} \circ \pi_1^{-1} \circ \gamma^{-1} \circ \pi_2^{-1}$
 - $\bullet \ \theta[k] \circ \pi_2 \circ \gamma \circ \pi_1$
- $\theta[k]$ as final transformation:
 - Regrouping: round of inverse cipher = cipher round
 - round constants prevent involution
- NOEKEON: 16 rounds and a final transformation
 - Inverse cipher equal to cipher itself
 - Asymmetry provided by round constants only

Nonlinear layer γ

Two identical nonlinear steps with a linear step in between

Mixing layer θ

High average diffusion and low cost

Mixing layer θ cont'd

- Branch number \mathcal{B} only 4 due to symmetry
- Invariant sparse states in kernel, e.g.:

Transposition steps π

• π_1 and π_2 are each others inverses

Trail bounds

- Bounds on 4-round trails
 - Differential trails: probability $\leq 2^{-48}$
 - Linear trails: correlation squared $\leq 2^{-48}$
- rounds over more than 11 rounds are unusable
- Powerful bounds thanks to
 - High average diffusion in θ and π
 - Kernel addressed in γ S-box
- Determining bounds:
 - Non-trivial exercise but one-time effort
 - See http://gro.noekeon.org/Noekeon-spec.pdf

Lightweight aspect

- Round function: 5 XOR, 1 AND/OR per bit
 - Compare to AES: 16 XOR, 5 AND per bit
- Hardware
 - # gates: [640 1050] XOR, 64 AND, 64 NOR, 128 MUX
 - Gate delay: 7 XOR, 1 AND, 1 MUX
 - Coprocessor architecture: speed/area trade-off
- Software: e.g. numbers for ARM7:
 - code size 332 bytes, 44.5 cycles/byte
 - code size 3688 bytes, 30 cycles/byte
 - RAM usage: everything in registers
- Cipher and inverse are equal: re-use of circuit and code

Outline

- 1 Block ciphers and statistical attacks
- 2 Correlation basics
- 3 Wide trail strategy: strongly-aligned flavor
- 4 Wide trail strategy: weakly-aligned flavor

5 Conclusions

Conclusions

- Wide trail strategy is a way to design round functions
- Strong alignment
 - simple proofs for trail weights
 - other distinguishers more likely
- Weak alignment
 - proofs for trail weights require computer assistance
 - other distinguishers less likely