Software implementation of ECC

Radboud University, Nijmegen, The Netherlands

RAN,

&
QC[TGQ'

o’the-‘?@
June 4, 2015

Summer school on real-world crypto and privacy
Sibenik, Croatia

Software implementation of (H)ECC

Radboud University, Nijmegen, The Netherlands

RAN,

&
(/
Yerre

Mine €
June 4, 2015

Summer school on real-world crypto and privacy
Sibenik, Croatia

The ECDLP

Definition
Given two points P and @ on an elliptic curve, such that Q € (P), find
an integer k such that kP = Q.

The ECDLP

Definition
Given two points P and @ on an elliptic curve, such that Q € (P), find

an integer k such that kP = Q.
Efficient ECC

» First idea: user needs to compute kP, so make that fast

The ECDLP

Definition
Given two points P and @ on an elliptic curve, such that Q € (P), find

an integer k such that kP = Q.
Efficient ECC

» First idea: user needs to compute kP, so make that fast

» Actual situation is more complex:
» Keypair generation: Compute kP for fixed P,
don’t leak information about scalar k

The ECDLP

Definition
Given two points P and @ on an elliptic curve, such that Q € (P), find

an integer k such that kP = Q.
Efficient ECC

» First idea: user needs to compute kP, so make that fast

» Actual situation is more complex:
» Keypair generation: Compute kP for fixed P,
don’t leak information about scalar k
» DH common-key computation: Compute kP for variable P,
don’t leak information about scalar &

The ECDLP

Definition
Given two points P and @ on an elliptic curve, such that Q € (P), find
an integer k such that kP = Q.

Efficient ECC

» First idea: user needs to compute kP, so make that fast

» Actual situation is more complex:
» Keypair generation: Compute kP for fixed P,
don’t leak information about scalar k
» DH common-key computation: Compute kP for variable P,
don’t leak information about scalar &
» Signature verification needs k1 Py + k2 Ps,
ok to leak information about (public) scalars k1 and k2

The ECDLP

Definition
Given two points P and @ on an elliptic curve, such that Q € (P), find
an integer k such that kP = Q.

Efficient ECC

» First idea: user needs to compute kP, so make that fast

» Actual situation is more complex:
» Keypair generation: Compute kP for fixed P,
don’t leak information about scalar k
» DH common-key computation: Compute kP for variable P,
don’t leak information about scalar k
» Signature verification needs k1 Py + k2 Ps,
ok to leak information about (public) scalars k1 and k2

The ECC implementation pyramid

Scalar multiplication

ECC add/double

Finite-field arithmetic

Big-integer or polynomial arithmetic

Why | don't like the pyramid. ..

» Pyramid levels are not independent
» Interactions through all levels, relevant for

» Correctness,
» Security, and
» Performance

Why | don't like the pyramid. ..

» Pyramid levels are not independent
» Interactions through all levels, relevant for

» Correctness,
» Security, and
» Performance

» Plan for today: demonstrate these dependencies

Why | don't like the pyramid. ..

v

Pyramid levels are not independent

v

Interactions through all levels, relevant for
» Correctness,
» Security, and
» Performance

v

Plan for today: demonstrate these dependencies
Fix target architecture: AMD64 (aka x86 64, aka x64)
Fix target microarchitecture: Intel Sandy Bridge and Ivy Bridge

v

v

Let's start with 255-bit integers

typedef struct{
unsigned long long al4];
} bigint255;

void bigint255_add(bigint255 *r,
const bigint2b55 *x,
const bigint255 *y)

r->al0] = x->al[0] + y->a[0];
r->al1] = x->a[1] + y->a[1];
r->a[2] = x->a[2] + y->a[2];
r->al[3] + y->al3];

x->al[3]

Let's start with 255-bit integers

typedef struct{
unsigned long long al4];
} bigint255;

void bigint255_add(bigint255 *r,
const bigint2b55 *x,
const bigint255 *y)

{
r->al0] = x->al[0] + y->a[0];
r->al1] = x->a[1] + y->a[1];
r->a[2] = x->a[2] + y->a[2];
r->a[3] = x->a[3] + y->al3];
}

» What's wrong about this?

Let's start with 255-bit integers

typedef struct{
unsigned long long al4];
} bigint255;

void bigint255_add(bigint255 *r,
const bigint2b55 *x,
const bigint255 *y)

{
r->al0] = x->al[0] + y->a[0];
r->al1] = x->a[1] + y->a[1];
r->a[2] = x->a[2] + y->a[2];
r->a[3] = x->a[3] + y->al3];
}

» What's wrong about this?
» This performs arithmetic on a vector of 4 independent 64-bit
integers (modulo 264)

Let's start with 255-bit integers

typedef struct{
unsigned long long al4];
} bigint255;

void bigint255_add(bigint255 *r,
const bigint2b55 *x,
const bigint255 *y)

{
r->al0] = x->al[0] + y->a[0];
r->al1] = x->a[1] + y->a[1];
r->a[2] = x->a[2] + y->a[2];
r->a[3] = x->a[3] + y->al3];
}

» What's wrong about this?

» This performs arithmetic on a vector of 4 independent 64-bit
integers (modulo 264)

» This is not the same as arithmetic on 256-bit integers

» Need to ripple the carries of all additions!

Radix-2°! representation

» Radix-2%4 representation works and is sometimes a good choice
» Highly depends on the efficiency of handling carries

Radix-2°! representation

» Radix-2%4 representation works and is sometimes a good choice
» Highly depends on the efficiency of handling carries

» Example 1: Intel Nehalem can do 3 additions every cycle, but only 1
addition with carry every two cycles (carries cost a factor of 6!)

Radix-2°! representation

v

Radix-2%4 representation works and is sometimes a good choice
Highly depends on the efficiency of handling carries

v

v

Example 1: Intel Nehalem can do 3 additions every cycle, but only 1
addition with carry every two cycles (carries cost a factor of 6!)

v

Example 2: When using vector arithmetic, carries are typically lost
(expensive to recompute)

Radix-2°! representation

» Radix-2%4 representation works and is sometimes a good choice
» Highly depends on the efficiency of handling carries

» Example 1: Intel Nehalem can do 3 additions every cycle, but only 1
addition with carry every two cycles (carries cost a factor of 6!)

» Example 2: When using vector arithmetic, carries are typically lost
(expensive to recompute)

> Let's get rid of the carries, represent A as (ag, a1, ag, as, aq) with

4
A= E ai251'l
=0

» This is called radix-2°! representation

Radix-2°! representation

» Radix-2%4 representation works and is sometimes a good choice
» Highly depends on the efficiency of handling carries

» Example 1: Intel Nehalem can do 3 additions every cycle, but only 1
addition with carry every two cycles (carries cost a factor of 6!)

» Example 2: When using vector arithmetic, carries are typically lost
(expensive to recompute)

> Let's get rid of the carries, represent A as (ag, a1, ag, as, aq) with

4
A= E ai251'l
=0

» This is called radix-2°! representation

» Multiple ways to write the same integer A, for example A = 2°2:
> (2%2,0,0,0,0)
> (0,2,0,0,0)

Addition of two bigint255

typedef struct{
unsigned long long a[5];
} bigint255;

void bigint255_add(bigint255 *r,
const bigint255 *x,
const bigint255 *y)

r->al0] = x->al[0] + y->a[0];
r->al1] = x->a[1] + y->al[1];
r->al2] = x->al[2] + y->al2];
r->a[3] = x->a[3] + y->al3];
r->al4] = x->al4] + y->al4];

Addition of two bigint255

typedef struct{
unsigned long long a[5];
} bigint255;

void bigint255_add(bigint255 *r,
const bigint255 *x,
const bigint255 *y)

r->al0] = x->al[0] + y->a[0];
r->al1] = x->a[1] + y->al[1];
r->al2] = x->al[2] + y->al2];
r->a[3] = x->a[3] + y->al3];
r->al4] = x->al4] + y->al4];

Addition of two bigint255

typedef struct{
unsigned long long a[5];
} bigint255;

void bigint255_add(bigint255 *r,
const bigint255 *x,
const bigint255 *y)

r->al0] = x->al[0] + y->a[0];
r->al1] = x->a[1] + y->al[1];
r->al2] = x->al[2] + y->al2];
r->a[3] = x->a[3] + y->al3];
r->al4] + y->al4];

x->al4]

» This works as long as all coefficients are in [0, ...,253 — 1]

Addition of two bigint255

typedef struct{
unsigned long long a[5];
} bigint255;

void bigint255_add(bigint255 *r,
const bigint255 *x,
const bigint255 *y)

{
r->al0] = x->al[0] + y->a[0];
r->al1] = x->a[1] + y->al[1];
r->a[2] = x->a[2] + y->a[2];
r->a[3] = x->a[3] + y->al3];
r->al4] = x->a[4] + y->al4];
}
» This works as long as all coefficients are in [0, ...,253 — 1]

» When starting with 51-bit coefficients, we can do quite a few
additions before we have to carry

Subtraction of two bigint255

typedef struct{
signed long long al[5];
} bigint255;

void bigint255_sub(bigint255 *r,
const bigint255 *x,
const bigint255 *y)

{
r->al0] = x->al[0] - y->al0];
r->al1] = x->a[1] - y->al1];
r->a[2] = x->a[2] - y->a[2];
r->al[3] = x->a[3] - y->al3];
r->al4] = x->a[4] - y->al4];
}

» Slightly update our bigint255 definition to work with signed 64-bit
integers

51

Carrying in radix-2

» With many additions, coefficients may grow larger than 63 bits

» They grow even faster in multiplication

10

Carrying in radix-2°!

» With many additions, coefficients may grow larger than 63 bits
» They grow even faster in multiplication
» Eventually we have to carry en bloc:

signed long long carry = r.a[0] >> 51;
r.a[1] += carry;

carry <<= b1;

r.a[0] -= carry;

10

Carrying in radix-2°!

» With many additions, coefficients may grow larger than 63 bits
» They grow even faster in multiplication
» Eventually we have to carry en bloc:
signed long long carry = r.a[0] >> 51;
r.a[1] += carry;
carry <<= b1;
r.a[0] -= carry;
» Similar for all higher coefficients. ..

10

Big integers and polynomials

» Addition/Subtraction code would look exactly the same for
5-coefficient polynomial addition

11

Big integers and polynomials

» Addition/Subtraction code would look exactly the same for
5-coefficient polynomial addition

» This is no coincidence: We actually perform arithmetic in Z[z]

» Inputs to addition/subtraction are 5-coefficient polynomials

11

Big integers and polynomials

v

Addition/Subtraction code would look exactly the same for
5-coefficient polynomial addition

v

This is no coincidence: We actually perform arithmetic in Z[z]

v

Inputs to addition/subtraction are 5-coefficient polynomials

v

Nice thing about arithmetic Z[x]: no carries!

11

Big integers and polynomials

vV v v v

Addition/Subtraction code would look exactly the same for
5-coefficient polynomial addition

This is no coincidence: We actually perform arithmetic in Z[z]
Inputs to addition/subtraction are 5-coefficient polynomials
Nice thing about arithmetic Z[x]: no carries!

To go from Z[z] to Z, evaluate at the radix (this is a ring
homomorphism)

Carrying means evaluating at the radix

11

Big integers and polynomials

vV v v v

Addition/Subtraction code would look exactly the same for
5-coefficient polynomial addition

This is no coincidence: We actually perform arithmetic in Z[z]
Inputs to addition/subtraction are 5-coefficient polynomials
Nice thing about arithmetic Z[x]: no carries!

To go from Z[z] to Z, evaluate at the radix (this is a ring
homomorphism)

» Carrying means evaluating at the radix

» Thinking of multiprecision integers as polynomials is very powerful

for efficient arithmetic

11

Using floating-point limbs

» Now we can also use floats for our coefficients

» An IEEE-754 floating-point number has value

(—1)* - (Lbm—1bm—z...bo) - 2°°* with b; € {0,1}

12

Using floating-point limbs

» Now we can also use floats for our coefficients

» An IEEE-754 floating-point number has value

(—1)* - (Lbm—1bm—z...bo) - 2°°* with b; € {0,1}

» For double-precision floats:

>

>
>
>

s € {0,1} “sign bit"

m = 52 "mantissa bits"

e € {l,...,2046} “exponent”
t = 1023

12

Using floating-point limbs

v

v

v

v

Now we can also use floats for our coefficients

An |EEE-754 floating-point number has value

(=1)% - (Lbm—1bm—s...bo) - 2°" with b; € {0,1}

For double-precision floats:

>

>
>
>

s € {0,1} “sign bit"

m = 52 "mantissa bits"
e € {l,...,2046} “exponent”
t = 1023

For single-precision floats:

v

vvyyvy

s € {0,1} “sign bit"

m = 23 "mantissa bits”

e € {1,...,254} "exponent”
t =127

12

Using floating-point limbs

v

v

v

v

Now we can also use floats for our coefficients
An |EEE-754 floating-point number has value

(=1)% - (Lbm—1bm—s...bo) - 2°" with b; € {0,1}

For double-precision floats:
> s €{0,1} “sign bit”
> m = 52 “mantissa bits"
» e€{l,...,2046} “exponent”
> ¢ =1023
For single-precision floats:
s € {0,1} “sign bit"
m = 23 “mantissa bits"
e € {1,...,254} "exponent”
t =127

Exponent = 0 used to represent 0

v

vvyyvy

12

Using floating-point limbs

v

v

v

v

v

v

v

Now we can also use floats for our coefficients
An |EEE-754 floating-point number has value

(=1)% - (Lbm—1bm—s...bo) - 2°" with b; € {0,1}

For double-precision floats:
> s €{0,1} “sign bit”
> m = 52 “mantissa bits"
» e€{l,...,2046} “exponent”
> ¢ =1023
For single-precision floats:
s € {0,1} “sign bit"
m = 23 “mantissa bits"
e € {1,...,254} "exponent”
t =127

Exponent = 0 used to represent 0

v

vvyyvy

Any number that can be represented like this, will be precise

Other numbers will be rounded, according to a rounding mode

12

Addition

typedef struct{
double al12];
} bigint255;

void bigint255_add(bigint255 *r,
const bigint255 *x,
const bigint255 *y)
{
int i;
for(i=0;i<12;i++)
r->ali] = x->al[i] + y->alil;

13

Subtraction

typedef struct{
double al12];
} bigint255;

void bigint255_sub(bigint255 *r,
const bigint255 *x,
const bigint255 *y)
{
int i;
for(i=0;i<12;i++)
r->ali] = x->ali]l - y->alil;

14

Carrying

» For carrying integers we used a right shift (discard lowest bits)

15

Carrying

For carrying integers we used a right shift (discard lowest bits)

v

v

For floating-point numbers we can use multiplication by the inverse
of the radix

Example: Radix 222

, multiply by 2722

v

This does not cut off lowest bits, need to round

v

15

Carrying

» For carrying integers we used a right shift (discard lowest bits)

» For floating-point numbers we can use multiplication by the inverse
of the radix

» Example: Radix 222, multiply by 2722

» This does not cut off lowest bits, need to round

» Some processors have efficient rounding instructions, e.g., vroundpd

15

Carrying

» For carrying integers we used a right shift (discard lowest bits)

v

vV vy VY

For floating-point numbers we can use multiplication by the inverse
of the radix

Example: Radix 222

, multiply by 2722
This does not cut off lowest bits, need to round
Some processors have efficient rounding instructions, e.g., vroundpd

Otherwise (for double-precision):

» add constant 252 4 251

» subtract constant 2°2 4 25!

» This will round the number to an integer according to the rounding
mode (to nearest, towards zero, away from zero, or truncate)

15

Why would you want this?

» ECC is typically bottlenecked by speed of multiplier
> Intel Sandy Bridge, lvy Bridge:
> One 64 x 64 — 128 multiplication per cycle

16

Why would you want this?

» ECC is typically bottlenecked by speed of multiplier
> Intel Sandy Bridge, lvy Bridge:

> One 64 x 64 — 128 multiplication per cycle
> Four (vectorized) double-precision multiplications per cycle

16

Why would you want this?

» ECC is typically bottlenecked by speed of multiplier
» Intel Sandy Bridge, lvy Bridge:

> One 64 x 64 — 128 multiplication per cycle
> Four (vectorized) double-precision multiplications per cycle
> Four (vectorized) double-precision additions in the same cycle

16

Why would you want this?

» ECC is typically bottlenecked by speed of multiplier

» Intel Sandy Bridge, lvy Bridge:
> One 64 x 64 — 128 multiplication per cycle
> Four (vectorized) double-precision multiplications per cycle
> Four (vectorized) double-precision additions in the same cycle

» Operations on 256-bit vector registers introduced with AVX

16

Why would you want this?

v

ECC is typically bottlenecked by speed of multiplier
Intel Sandy Bridge, lvy Bridge:
> One 64 x 64 — 128 multiplication per cycle
> Four (vectorized) double-precision multiplications per cycle
> Four (vectorized) double-precision additions in the same cycle

v

v

Operations on 256-bit vector registers introduced with AVX

v

Integer operations on those registers introduced only with AVX2
Sandy Bridge and lvy Bridge don't have AVX2

v

16

Vectorizing EC scalar multiplication

Computing multiple scalar multiplications

» Changes the rules of the game
> Increases size of active data set

17

Vectorizing EC scalar multiplication

Computing multiple scalar multiplications

» Changes the rules of the game
> Increases size of active data set

Parallelism inside multiprecision arithmetic

» Addition (in redundant representation) is trivially vectorized
» Vectorizing multiplication needs many shuffles

» Vectorization “eats up" instruction-level parallelism

17

Vectorizing EC scalar multiplication

Computing multiple scalar multiplications

» Changes the rules of the game
> Increases size of active data set

Parallelism inside multiprecision arithmetic

» Addition (in redundant representation) is trivially vectorized
» Vectorizing multiplication needs many shuffles

» Vectorization “eats up" instruction-level parallelism

Parallelism inside EC arithmetic

» Vectorize independent multiplications in EC addition
> May still need some shuffles (after each block of operations)

» Efficiency depends on EC formulas

17

Example: Montgomery ladder step

function ladderstep(zg_p, Xp, Zp, Xq, Zg)

ti1 < Xp+2Zp
te < 13
tQ(—Xp—ZP
ty < t2

ts < tg — t7
3+ Xo+ Zg
t4(—XQ—ZQ
tg <ty - 11

tg < t3 - to

Xpiq ¢ (ts +t9)?

Zpiq < xq-p - (ts — t9)*

Xpjp ¢ to - t7

Zip <15 - (b7 + (A+2)/4) - t5)

return (X[Q}p, Z[Q]p, Xpiq, ZP+Q)
end function

18

Example: Montgomery ladder step

function ladderstep(zg_p, Xp, Zp, Xq, Zg)

tq FXP—FZp;tQ<—Xp—Zp;t3(—XQ+ZQ;t4<—XQ—ZQ
teg <—t1 L1ty < tg - totg <ty L1589 13- 12

tio — ((A+2)/4) - tg
tin — ((A+2)/4—-1)-t7

ts < tg —tr;tg < t1g —t11;81 < tg —To;lp < tg + 19
Z[Q]p — t5 't4;Xp+Q %t%;X[Q]p —tgtritg <—t1 -t

ZpyQ — To-p - t2

return (X3)p, Zp21p, XP1Qs ZP+Q)
end function

18

A better candidate: Kummer surfaces

» Think of a Kummer surface as the Jacobian of a hyperelliptic curve
modulo negation

19

A better candidate: Kummer surfaces

» Think of a Kummer surface as the Jacobian of a hyperelliptic curve
modulo negation

» Easier way to think about it:

> Group modulo negation

> Map from group to Kummer surface by rational map X
Elements represented projectively as (z : y: z : t)
(x:y:z:t)=(rx:ry:rz:rt) forany r #0
Efficient doubling and efficient differential addition

vyvyy

A better candidate: Kummer surfaces

» Think of a Kummer surface as the Jacobian of a hyperelliptic curve
modulo negation
» Easier way to think about it:
> Group modulo negation
> Map from group to Kummer surface by rational map X
> Elements represented projectively as (z:y: z:t)
> (zry:z:t)=(re:ry:rz:rt) forany r #0
> Efficient doubling and efficient differential addition
> Ladderstep: gets as input X (P) = (22 : Y2 : 22 : t2),
X(Q)=(x3:ys:23:t3),and X(Q — P) = (z1:y1:21:t1)
> Computes X (2P) = (x4 : ya : 24 : ta)
» Computes X(P+ Q) = (x5 : y5 : 25 : t5)

19

A better candidate: Kummer surfaces

» Think of a Kummer surface as the Jacobian of a hyperelliptic curve
modulo negation

» Easier way to think about it:
> Group modulo negation
> Map from group to Kummer surface by rational map X
> Elements represented projectively as (z:y: z:t)
> (zry:z:t)=(re:ry:rz:rt) forany r #0
> Efficient doubling and efficient differential addition
> Ladderstep: gets as input X (P) = (22 : Y2 : 22 : t2),
X(Q)=(x3:ys:23:t3),and X(Q — P) = (z1:y1:21:t1)
> Computes X (2P) = (x4 : ya : 24 : ta)
» Computes X(P+ Q) = (x5 : y5 : 25 : t5)

» Coordinates are elements of a (large) finite field

19

A better candidate: Kummer surfaces

» Think of a Kummer surface as the Jacobian of a hyperelliptic curve
modulo negation
» Easier way to think about it:
> Group modulo negation
> Map from group to Kummer surface by rational map X
> Elements represented projectively as (z:y: z:t)
> (zry:z:t)=(re:ry:rz:rt) forany r #0
> Efficient doubling and efficient differential addition
> Ladderstep: gets as input X (P) = (22 : Y2 : 22 : t2),
X(Q)=(x3:ys:23:t3),and X(Q — P) = (z1:y1:21:t1)
> Computes X (2P) = (x4 : ya : 24 : ta)
» Computes X(P+ Q) = (x5 : y5 : 25 : t5)
» Coordinates are elements of a (large) finite field
» For same security level, underlying field has half the size as for ECC

» Example: Choose ~ 128-bit field for ~ 128 bits of security

19

Arithmetic on the Kummer surface

To Y2 22 t2 X3 Y3 23

Wl d Wl iH

-~ w

U\"“<—:~‘?~i<— PN — le— X
<

10M 4+ 9S + 6m ladder formulas

Arithmetic on the Kummer surface

t3

TR TR AT

ta 3 Y3

22

T2 Y2

X X X X X X X X

S - 5

= X = <T|Q = lVLtht

i — o~ 0

— X <O = ¢LZ‘VZ

o 171 0

— X < = sl —3

10

— T 5
ZNg X

AiDIV F=>sI® > ¥

s a <

A.iCIV >S9 — J

— Vﬁiwmfv Lsslo_o &

= ! >

s <

= X H 8

™™ + 12S 4 9m ladder formulas

10M 4+ 9S + 6m ladder formulas

The

“squared Kummer surface”

v

In fact, we use arithmetic on a different, “squared” surface

v

Each point (z : y : z : t) on the original surface corresponds to
(22 1 y? : 22 1 t2) on the squared surface

v

No operation-count advantages

v

Easier to construct squared surface with small constants

v

In the following rename (22 :y? : 22 :t?) to (v 1y : 2 : t)

21

Arithmetic on the squared Kummer surface

To Y2 22 to x3 Y3 23 t

Pbovo4ob oy
(s
P

v
H

<

T x

x|

<
~—
<
~—
<
~—
<
~—
<
~—
<
~—
<
~—

X X X X X X X X
Voo

l .o l Ly
b cz d Y1 21t
vy '

Ty Y4 Z4 ta X5 Y5 25 Ut

10M + 9S + 6m ladder formulas

Arithmetic on the squared Kummer surface

To Y2 2z2 to X3 Y3 23

¢¢¢¢’¢¢

To Y2 Zz2 t2 X3 Y3 23 t3

vy

ixl ixl ixl ixl ixl ixl ixl ixl
k Vz Vz Vz k Vo

A A
Ty Ya 24 ta w5 Ys 25 U5

10M + 9S + 6m ladder formulas ™™ + 12S 4 9m ladder formulas

Arithmetic on the (original) Kummer surface

t3

TR TR AT

ta T3 Y3

Z2

T2 Y2

X X X X X X X X

™™ + 12S 4 9m ladder formulas

10M + 9S + 6m ladder formulas

A suitable Kummer surface

» Formulas for efficient Kummer surface arithmetic known for a while
» Originally proposed by Chudnovsky, Chudnovsky, 1986
> 10M + 9S + 6m formulas by Gaudry, 2006
> TM + 12S + 9m formulas by Bernstein, 2006

24

A suitable Kummer surface

» Formulas for efficient Kummer surface arithmetic known for a while

» Originally proposed by Chudnovsky, Chudnovsky, 1986
> 10M + 9S + 6m formulas by Gaudry, 2006
> TM + 12S + 9m formulas by Bernstein, 2006

» Problem: find cryptographically secure surface with small constants

24

A suitable Kummer surface

» Formulas for efficient Kummer surface arithmetic known for a while

» Originally proposed by Chudnovsky, Chudnovsky, 1986
> 10M + 9S + 6m formulas by Gaudry, 2006
> TM + 12S + 9m formulas by Bernstein, 2006

» Problem: find cryptographically secure surface with small constants

» Gaudry, Schost, 2012: suitable (squared) surface:

> Defined over the field Fyia7_;
> (1:ad%/b®:a?/c? : a®/d?) = (=114 : 57 : 66 : 418)
> (1:A%/B%: A%/C?: A?/D?) = (—833 : 2499 : 1617 : 561)

24

A suitable Kummer surface

Formulas for efficient Kummer surface arithmetic known for a while

v

» Originally proposed by Chudnovsky, Chudnovsky, 1986

> 10M + 9S + 6m formulas by Gaudry, 2006

> TM + 12S + 9m formulas by Bernstein, 2006
Problem: find cryptographically secure surface with small constants
Gaudry, Schost, 2012: suitable (squared) surface:

> Defined over the field Fyia7_;

> (1:ad%/b®:a?/c? : a®/d?) = (=114 : 57 : 66 : 418)

> (1:A%/B%: A%/C?: A?/D?) = (—833 : 2499 : 1617 : 561)
Finding this surface cost 1000000 CPU hours
The same surface has been used by Bos, Costello, Hisil, and Lauter
(Eurocrypt 2013)

v

v

v

v

24

Representing elements of Foi2r_

> Represent an element A in radix-2'27/6

» Write A as ag, a1, as, as, aq, as, where

>

Yy VY VvV VY

ao
al
az
as
a4
as

is a small multiple of 2°
is a small multiple of 222
is a small multiple of 243
is a small multiple of 264
is a small multiple of 2%°
is a small multiple of 216

25

Multiplication

» Consider multiplication of A and B with reduction mod 2127 — 1
» Make use of the fact that 2127 =1
» With radix 2127/6 e obtain:

ro = agbg + 271270,11)5 + 27127a2b4 + 27127(13()3 + 27127(14172 + 27127a5b1

r1 = agby + arbo + 27 % asbs + 27 agby + 272 agbs + 272 a5 by
ro = agby + ai1b; + asby + 2*127a3b5 + 2727 qby + 2*127a5b3
r3 = agbs + ai1by + asby + asbo + 27 % asbs + 27127 asb,
ry = agby + a1bs + asby + asby + agby + 2*127a5b5

r5 = aobs + arby +

asbs + aszbs + asby + asbg

26

Multiplication

» Consider multiplication of A and B with reduction mod 2127 — 1
» Make use of the fact that 2127 =1
» With radix 2127/6 e obtain:

ro = agbg + 271270,1175 + 27127a2b4 + 27127(13()3 + 27127(14&12 + 27127a5b1

r1 = agby + arbo + 27 % asbs + 27 agby + 272 agbs + 272 a5 by
ro = agby + ai1b; + asby + 2*127a3b5 + 2727 qby + 2*127a5b3
r3 = agbs + ai1by + asby + asbo + 27 % asbs + 27127 asb,
ry = agby + a1bs + asby + asby + agby + 2*127a5b5

r5 = aobs + aibs + asbs + aszbs + asby + asbg

» Obviously, we always perform this whole thing 4x in parallel

26

Multiplication

» Consider multiplication of A and B with reduction mod 2127 — 1
» Make use of the fact that 2127 =1
» With radix 2127/6 e obtain:

ro = agbg + 271270,1175 + 27127a2b4 + 27127(13()3 + 27127(14&12 + 27127a5b1

aibg + 2_127a2b5 + 2_127a3b4 + 2_127a4b3 + 2_127a5b2

r1 = agb1 +
ro = apbz +
r3 = agbs +
ry = aopbs +
r5 = agbs +

ai1b; +
arby +
a1bs +
arby +

asbo + 27 % asbs + 2727 auby + 272 agbs
ashy + asbo + 27 % asbs + 27127 asb,
asby + asby + asbo + 271" asbs
aszbz + asby + ashy + asbg

» Obviously, we always perform this whole thing 4x in parallel

> Obviously, we specialize squaring

26

Multiplication

» Consider multiplication of A and B with reduction mod 2127 — 1
» Make use of the fact that 2127 =1
» With radix 2127/6 e obtain:

ro = agbg + 271270,1175 + 27127a2b4 + 27127(13()3 + 27127(14&12 + 27127a5b1

r1 = apb; + airbo + 272 agbs + 271 agby + 272 aybs + 2712 agby
ro = agby + ai1b; + asby + 2*127a3b5 + 2727 qby + 2*127a5b3
r3 = agbs + ai1by + asby + asbo + 27 % asbs + 27127 asb,
ry = agby + a1bs + asby + asby + agby + 2*127a5b5
5 = aopbs + arby + azbz + azby + asby + asbo

» Obviously, we always perform this whole thing 4x in parallel
> Obviously, we specialize squaring

» Obviously, we specialize multiplications by small constants

26

The Hadamard transform

S
X1 1

| =<— | =<—

I
i

» Only shuffeling operation in
Kummer arithmetic

» AVX has limited shuffeling
across left and right half

» Plain Hadamard turns out to be
expensive

27

The Hadamard transform

» Only shuffeling operation in
Kummer arithmetic

» AVX has limited shuffeling
across left and right half

a0
X1 1

| =<— | =<—

T

|

J{ » Plain Hadamard turns out to be
expensive

Permuted and negated Hadamard

» Allow generalized Hadamard to output permuted vector

> Self-inverting permutation “cleans” after two generalized Hadamards

27

The Hadamard transform

» Only shuffeling operation in
Kummer arithmetic

» AVX has limited shuffeling
across left and right half

a0
X1 1

| =— | =— =+

» Plain Hadamard turns out to be
expensive

I
i

Permuted and negated Hadamard

Allow generalized Hadamard to output permuted vector
Self-inverting permutation “cleans” after two generalized Hadamards
Allow generalized Hadamard to negate vector entries

vV v . vvY

“Clean” negations by multiplication by negated constants

27

Arithmetic on the squared Kummer surface

91 [T S f’ f
LH R |
l y : o
A2/D2 (A (B e (D) (A (B
T e e

= |

b= 0= 0 4=

>< X X X X X X
iy = A S
e @) (—a¥) @) e @) (wfm) (/)

b Pl

T4 Ya —24 t4 Ts5 Ys —25 ts

Looking back. ..

» Fastest computation units are vector units

» Choose (H)ECC with efficiently vectorizable formulas

29

Looking back. ..

» Fastest computation units are vector units
» Choose (H)ECC with efficiently vectorizable formulas

» Formulas “dictate” the scalar multiplication algorithm

29

Looking back. ..

Fastest computation units are vector units
Choose (H)ECC with efficiently vectorizable formulas

Formulas “dictate” the scalar multiplication algorithm

vV v v v

Choose representation of field elements for fast reduction

29

Looking back. ..

Fastest computation units are vector units
Choose (H)ECC with efficiently vectorizable formulas
Formulas “dictate” the scalar multiplication algorithm

Choose representation of field elements for fast reduction

vV v v v Yy

Adjust formulas according to fast shuffle instructions

29

Looking back. ..

Fastest computation units are vector units

Choose (H)ECC with efficiently vectorizable formulas
Formulas “dictate” the scalar multiplication algorithm
Choose representation of field elements for fast reduction
Adjust formulas according to fast shuffle instructions

vV v v v Vv Y

Optimizations go through all levels of the pyramid!

29

Results

128-bit secure, constant-time scalar multiplication

arch cycles open source of software

Sandy | 194036 | yes Bernstein—Duif-Lange—Schwabe-
Yang CHES 2011

Sandy | 1530007 | no Hamburg

Sandy | 1370007 | no Longa—Sica Asiacrypt 2012

Sandy | 122716 | yes Bos—Costello—Hisil-Lauter Euro-
crypt 2013

Sandy | 119904 | yes Oliveira—Lépez—Aranha—Rodriguez-
Henriquez CHES 2013

Sandy | 960007 | no Faz-Hernandez—Longa—Sanchez CT-
RSA 2014

Sandy | 920007 | no Faz-Hernandez-Longa—Sanchez
July 2014

Sandy | 88916 | yes new (our results)

30

Results

128-bit secure, constant-time scalar multiplication

arch | cycles open source of software

Ivy 182708 | yes Bernstein—Duif-Lange—Schwabe—Yang
CHES 2011

Ivy 1450007 | yes Costello—Hisil-Smith Eurocrypt 2014

Ivy 119032 | yes Bos—Costello—Hisil-Lauter Euro-
crypt 2013

Ivy 114036 | yes Oliveira—Lépez—Aranha—Rodriguez-
Henriquez CHES 2013

Ivy 920007 | no Faz-Hernandez-Longa—Sanchez CT-
RSA 2014

Ivy 890007 | no Faz-Hernandez—Longa—Sanchez
July 2014

lvy 88448 | yes new (our results)

30

More results

Also optimized for Intel Haswell

arch

cycles open source of software

Haswell | 145907 | yes Bernstein—Duif-Lange—
Schwabe-Yang CHES 2011

Haswell | 100895 | yes Bos—Costello—Hisil-Lauter
Eurocrypt 2013

Haswell | 55595 | no Oliveira—Lépez—Aranha—
Rodriguez-Henriquez
CHES 2013

Haswell | 54389 | yes new (our results)

31

Even more results

Also optimized for ARM Cortex-A8

arch cycles open | g | source of software
A8-slow | 497389 | yes 1 | Bernstein—Schwabe CHES 2012
A8-slow | 305395 | yes 2 | new (our result)
A8-fast | 460200 | yes 1 | Bernstein—Schwabe CHES 2012
A8-fast | 273349 | yes 2 | new (our result)

32

Resources online

Paper:

Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, Peter
Schwabe. “Kummer strikes back: new DH speed records”.
http://cryptojedi.org/papers/#kummer

Software:
Included in SUPERCOP, subdirectory crypto_scalarmult/kummer/
http://bench.cr.yp.to/supercop.html

33

http://cryptojedi.org/papers/#kummer
http://bench.cr.yp.to/supercop.html

