The LWE problem
from lattices to cryptography

Damien Stehlé
ENS de Lyon

Šibenik, June 2015
What is a good problem, for a cryptographer?

- Almost all of its instances must be hard to solve.

 Attacks must be too expensive.

- Its instances must be easy to sample.

 The algorithms run by honest users should be efficient.

- The problem must be (algebraically) rich/expressive.

 So that interesting models of attacks can be handled, even for advanced cryptographic functionalities.
What is a good problem, for a cryptographer?

- Almost all of its instances must be **hard to solve**.

 Attacks must be too expensive.

- Its instances must be **easy to sample**.

 The algorithms run by honest users should be efficient.

- The problem must be (algebraically) **rich/expresive**.

 So that interesting models of attacks can be handled, even for advanced cryptographic functionalities.
What is a good problem, for a cryptographer?

- Almost all of its instances must be hard to solve.

 Attacks must be too expensive.

- Its instances must be easy to sample.

 The algorithms run by honest users should be efficient.

- The problem must be (algebraically) rich/expressive.

 So that interesting models of attacks can be handled, even for advanced cryptographic functionalities.
What is a good problem, for a cryptographer?

- Almost all of its instances must be **hard to solve**.
 Attacks must be too expensive.

- **Its instances must be easy to sample.**
 The algorithms run by honest users should be efficient.

- **The problem must be (algebraically) rich/expressive.**
 So that interesting models of attacks can be handled, even for advanced cryptographic functionalities.
The Learning With Errors problem

Informal definition

Solve a random system of m noisy linear equations and n unknowns modulo an integer q, with $m \gg n$.

- The best known algorithms are exponential in $n \log q$.
- Sampling an instance costs $O(mn \log q)$. Very often, $m = O(n \log q)$, so this is $O((n \log q)^2)$.
- Very rich/expressive: encryption [Re05], ID-based encr. [GePeVa08], fully homomorphic encr. [BrVa11], attribute-based encr. [GoVaWe13], etc.
The Learning With Errors problem

Informal definition
Solve a random system of m noisy linear equations and n unknowns modulo an integer q, with $m \gg n$.

- The best known algorithms are exponential in $n \log q$.
- Sampling an instance costs $O(mn \log q)$.
 Very often, $m = O(n \log q)$, so this is $O((n \log q)^2)$.
- Very rich/expressive:
 encryption [Re05], ID-based encr. [GePeVa08], fully homomorphic encr. [BrVa11], attribute-based encr. [GoVaWe13], etc.
The Learning With Errors problem

Informal definition

Solve a random system of m noisy linear equations and n unknowns modulo an integer q, with $m \gg n$.

- The best known algorithms are exponential in $n \log q$.
- Sampling an instance costs $O(mn \log q)$.
 Very often, $m = O(n \log q)$, so this is $O((n \log q)^2)$.
- Very rich/expressive:
 encryption [Re05], ID-based encr. [GePeVa08], fully homomorphic encr. [BrVa11], attribute-based encr. [GoVaWe13], etc.
Goals of this talk

- Introduce LWE.
- Show the relationship between LWE and lattices.
- Use LWE to design a public-key encryption scheme.
- Give some open problems.
Road-map

- Definition of the LWE problem
- Regev’s encryption scheme
- Lattice problems
- Hardness of LWE
- Equivalent problems
Road-map

- Definition of the LWE problem
- Regev’s encryption scheme
- Lattice problems
- Hardness of LWE
- Equivalent problems
Gaussian distributions

Continuous Gaussian of parameter s:

$$D_s(x) \sim \frac{1}{s} \exp \left(-\pi \frac{x^2}{s^2} \right) \quad \forall x \in \mathbb{R}$$
Gaussian distributions

Continuous Gaussian of parameter s:

$$D_s(x) \sim \frac{1}{s} \exp \left(- \pi \frac{x^2}{s^2} \right)$$
$$\forall x \in \mathbb{R}$$

Discrete Gaussian of support \mathbb{Z} and parameter s:

$$D_{\mathbb{Z},s}(x) \sim \frac{1}{s} \exp \left(- \pi \frac{x^2}{s^2} \right)$$
$$\forall x \in \mathbb{Z}$$
Gaussian distributions

Continuous Gaussian of parameter s:

\[
D_s(x) \sim \frac{1}{s} \exp \left(-\pi \frac{x^2}{s^2} \right)
\]
\[\forall x \in \mathbb{R}\]

Discrete Gaussian of support \mathbb{Z} and parameter s:

\[
D_{\mathbb{Z},s}(x) \sim \frac{1}{s} \exp \left(-\pi \frac{x^2}{s^2} \right)
\]
\[\forall x \in \mathbb{Z}\]

- That’s not the rounding of a continuous Gaussian.
- One may efficiently sample from it.
- The usual tail bound holds.
The LWE problem \cite{Re05}

Let $n \geq 1$, $q \geq 2$ and $\alpha \in (0, 1)$. For all $s \in \mathbb{Z}_q^n$, we define the distribution $D_{n,q,\alpha}(s)$:

$$(a, \langle a, s \rangle + e) \in \mathbb{Z}_q^n \times \mathbb{Z}_q,$$

with $a \leftarrow U(\mathbb{Z}_q^n)$ and $e \leftarrow D_{\mathbb{Z},\alpha q}$.

Search LWE

For all s: Given arbitrarily many samples from $D_{n,q,\alpha}(s)$, find s.

(Information-theoretically, $\approx n \frac{\log q}{\log \frac{1}{\alpha}}$ samples uniquely determine s.)

Decision LWE

With non-negligible probability over $s \leftarrow U(\mathbb{Z}_q^n)$:

distinguish between the distributions $D_{n,q,\alpha}(s)$ and $U(\mathbb{Z}_q^{n+1})$.

(Non-negligible: $1/(n \log q)^c$ for some constant $c > 0$.)
The LWE problem [Re05]

Let $n \geq 1$, $q \geq 2$ and $\alpha \in (0, 1)$.
For all $s \in \mathbb{Z}_q^n$, we define the distribution $D_{n,q,\alpha}(s)$:

$$(a, \langle a, s \rangle + e) \in \mathbb{Z}_q^n \times \mathbb{Z}_q, \text{ with } a \leftarrow U(\mathbb{Z}_q^n) \text{ and } e \leftarrow D_{\mathbb{Z},\alpha q}.$$

Search LWE

For all s: Given arbitrarily many samples from $D_{n,q,\alpha}(s)$, find s.

(Information-theoretically, $\approx n \frac{\log q}{\log 1/\alpha}$ samples uniquely determine s.)

Decision LWE

With non-negligible probability over $s \leftarrow U(\mathbb{Z}_q^n)$:
distinguish between the distributions $D_{n,q,\alpha}(s)$ and $U(\mathbb{Z}_q^{n+1})$.

(Non-negligible: $1/(n \log q)^c$ for some constant $c > 0$.)
Let $n \geq 1$, $q \geq 2$ and $\alpha \in (0, 1)$. For all $s \in \mathbb{Z}_q^n$, we define the distribution $D_{n,q,\alpha}(s)$:

$$(a, \langle a, s \rangle + e) \in \mathbb{Z}_q^n \times \mathbb{Z}_q,$$

with $a \leftarrow U(\mathbb{Z}_q^n)$ and $e \leftarrow D_{\mathbb{Z},\alpha q}$.

Search LWE

For all s: Given arbitrarily many samples from $D_{n,q,\alpha}(s)$, find s.

(Information-theoretically, $\approx n \frac{\log q}{\log \frac{1}{\alpha}}$ samples uniquely determine s.)

Decision LWE

With non-negligible probability over $s \leftarrow U(\mathbb{Z}_q^n)$: distinguish between the distributions $D_{n,q,\alpha}(s)$ and $U(\mathbb{Z}_q^{n+1})$.

(Non-negligible: $1/(n \log q)^c$ for some constant $c > 0$.)
Decision LWE

Let $n \geq 1$, $q \geq 2$ and $\alpha \in (0, 1)$.
For all $s \in \mathbb{Z}_q^n$, we define the distribution $D_{n,q,\alpha}(s)$:

$$(a, \langle a, s \rangle + e), \text{ with } a \leftarrow U(\mathbb{Z}_q^n) \text{ and } e \leftarrow D_{\mathbb{Z},\alpha,q}.$$

We are given an oracle \mathcal{O} that produces independent samples from always the same distribution, which is:

- either $D_{n,q,\alpha}(s)$ for a fixed s,
- or $U(\mathbb{Z}_q^{n+1})$.

We have to tell which, with probability $\geq \frac{1}{2} + \frac{1}{(n \log q)^\Omega(1)}$.

Decision LWE

With non-negligible probability over $s \leftarrow U(\mathbb{Z}_q^n)$:
distinguish between the distributions $D_{n,q,\alpha}(s)$ and $U(\mathbb{Z}_q^{n+1})$.

Damien Stehlé
Search LWE \equiv solving noisy linear systems

Find $s_1, s_2, s_3, s_4, s_5 \in \mathbb{Z}_{23}$ such that:

\[
\begin{align*}
 s_1 + 22s_2 + 17s_3 + 2s_4 + s_5 & \approx 16 \mod 23 \\
 3s_1 + 2s_2 + 11s_3 + 7s_4 + 8s_5 & \approx 17 \mod 23 \\
 15s_1 + 13s_2 + 10s_3 + s_4 + 22s_5 & \approx 3 \mod 23 \\
 17s_1 + 11s_2 + s_3 + 10s_4 + 3s_5 & \approx 8 \mod 23 \\
 2s_1 + s_2 + 13s_3 + 6s_4 + 2s_5 & \approx 9 \mod 23 \\
 4s_1 + 4s_2 + s_3 + 5s_4 + s_5 & \approx 18 \mod 23 \\
 11s_1 + 12s_2 + 5s_3 + s_4 + 9s_5 & \approx 7 \mod 23
\end{align*}
\]

We can even ask for arbitrarily many noisy equations.
Matrix version of LWE

\[
\begin{pmatrix}
\text{A} & \text{A} \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
m \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
n \\
\end{pmatrix}
\]

\[
\text{A} \leftarrow U(\mathbb{Z}_q^{m \times n}),
\]

\[
\text{s} \leftarrow U(\mathbb{Z}_q^n),
\]

\[
\text{e} \leftarrow D_{\mathbb{Z}_q^m, \alpha q}.
\]

Discrete Gaussian error

Decision LWE:

Determine whether \((\text{A}, \text{b})\) is of the form above, or uniform.
Some simple remarks

- If $\alpha \approx 0$, LWE is easy to solve.
- If $\alpha \approx 1$, LWE is trivially hard.
- Very often, we are interested in
 \[\alpha \approx \frac{1}{n^c}, \quad q \approx n^{c'}, \quad \text{for some constants } c' > c > 0. \]
- Why a discrete Gaussian noise?
Why is LWE interesting for crypto?

- LWE is just noisy linear algebra: Easy to use, expressive.
- LWE seems to be a (very) hard problem.

Two particularly useful properties:
- Unlimited number of samples.
- Random self-reducibility over s.

If q is prime and $\leq n^{O(1)}$, there are polynomial-time reductions between the Search and Decision versions of LWE [Re05].

(We may remove these assumptions, if we allow some polynomial blow-up on α.)
Why is LWE interesting for crypto?

- LWE is just noisy linear algebra: Easy to use, expressive.
- LWE seems to be a (very) hard problem.

Two particularly useful properties:
- Unlimited number of samples.
- Random self-reducibility over s.

If q is prime and $\leq n^{O(1)}$, there are polynomial-time reductions between the Search and Decision versions of LWE [Re05].

(We may remove these assumptions, if we allow some polynomial blow-up on α.)
Road-map

- Definition of the LWE problem
- Regev’s encryption scheme
- Lattice problems
- Hardness of LWE
- Equivalent problems
A public-key encryption scheme over \(\{0, 1\} \times \mathcal{C} \) consists in three algorithms:

- **\textsc{KeyGen}**: Security parameter \(\mapsto (pk, sk) \).
- **\textsc{Enc}**: \((pk, M) \mapsto C \in \mathcal{C} \).
- **\textsc{Dec}**: \((sk, C) \mapsto M' \in \{0, 1\} \).

Correctness

With probability \(\approx 1 \), \(\forall M \in \{0, 1\} : \textsc{Dec}_{sk}(\textsc{Enc}_{pk}(M)) = M \).

Security (IND-CPA)

The distributions of \((pk, \textsc{Enc}_{pk}(0)) \) and \((pk, \textsc{Enc}_{pk}(1)) \) must be \textit{computationally indistinguishable}.
Public-key encryption

A public-key encryption scheme over \(\{0, 1\} \times \mathcal{C} \) consists in three algorithms:

- **\texttt{KeyGen}**: Security parameter \(\mapsto (pk, sk) \).
- **\texttt{Enc}**: \((pk, M) \mapsto C \in \mathcal{C} \).
- **\texttt{Dec}**: \((sk, C) \mapsto M' \in \{0, 1\} \).

Correctness

With probability \(\approx 1 \), \(\forall M \in \{0, 1\} : \text{\texttt{Dec}}_{sk}(\text{\texttt{Enc}}_{pk}(M)) = M \).

Security (IND-CPA)

The distributions of \((pk, \text{\texttt{Enc}}_{pk}(0))\) and \((pk, \text{\texttt{Enc}}_{pk}(1))\) must be computationally indistinguishable.
Public-key encryption

A public-key encryption scheme over \(\{0, 1\} \times C \) consists in three algorithms:

- **KEYGEN**: Security parameter \(\mapsto (pk, sk) \).
- **ENC**: \((pk, M) \mapsto C \in C \).
- **DEC**: \((sk, C) \mapsto M' \in \{0, 1\} \).

Correctness

With probability \(\approx 1 \), \(\forall M \in \{0, 1\} : \text{DEC}_{sk}(\text{ENC}_{pk}(M)) = M \).

Security (IND-CPA)

The distributions of \((pk, \text{ENC}_{pk}(0)) \) and \((pk, \text{ENC}_{pk}(1)) \) must be **computationally indistinguishable**.
Parameters: \(n, m, q, \alpha \).

Keys: \(\text{sk} = s \) and \(\text{pk} = (A, b) \), with \(b = A \cdot s + e \).

\(\text{ENC}(M \in \{0, 1\}) \): Let \(r \sim U(\{0, 1\}^m) \),

\[
\begin{align*}
u^T &= A, \quad v = b + \left\lfloor \frac{q}{2} \right\rfloor \cdot M.
\end{align*}
\]

\(\text{DEC}(u, v) \): Compute \(v - u^T s \) (modulo \(q \)).

If it’s close to 0, output 0, else output 1.
Regev’s encryption scheme

- **Parameters**: \(n, m, q, \alpha \).
- **Keys**: \(\text{sk} = s \) and \(\text{pk} = (A, b) \), with \(b = As + e \).
- **ENC\((M \in \{0, 1\})\)**: Let \(r \leftarrow U(\{0, 1\}^m) \),
 \[
 u^T = \begin{bmatrix} r^T \\ \end{bmatrix}, \quad v = \begin{bmatrix} r^T \\ \end{bmatrix}A + \left\lfloor \frac{q}{2} \right\rfloor M.
 \]

- **DEC\((u, v)\)**: Compute \(v - u^T s \) (modulo \(q \)).
 \[
 \begin{bmatrix} r^T \\ \end{bmatrix}A + \left\lfloor \frac{q}{2} \right\rfloor M - \]
 \[
 = \text{small} + \left\lfloor \frac{q}{2} \right\rfloor M
 \]

If it’s close to 0, output 0, else output 1.
Decryption correctness

Correctness

Assume that \(\alpha \leq o\left(\frac{1}{\sqrt{m\log n}}\right) \).
Then, with probability \(\geq 1 - n^{-\omega(1)} \), it correctly decrypts.

We have

\[v - u^T s = r^T e + \lfloor q/2 \rfloor M \mod q. \]

As \(e \sim D_{\mathbb{Z},\alpha q}^m \), we expect \(\langle r, e \rangle \) to behave like \(D_{\|r\|\alpha q} \).

As \(\|r\| \leq \sqrt{m} \), we have \(\|r\|\alpha q \leq o\left(\frac{q}{\sqrt{\log n}}\right) \), and

a sample from \(D_{\|r\|\alpha q} \) is \(< q/8 \) with probability \(\geq 1 - n^{-\omega(1)} \).
Decryption correctness

Assume that $\alpha \leq o\left(\frac{1}{\sqrt{m \log n}}\right)$.
Then, with probability $\geq 1 - n^{-\omega(1)}$, it correctly decrypts.

We have

$$v - u^T s = r^T e + \lfloor q/2 \rfloor M \mod q.$$

As $e \sim D_{\mathbb{Z},\alpha q}^m$, we expect $\langle r, e \rangle$ to behave like $D_{\|r\|\alpha q}$.

As $\|r\| \leq \sqrt{m}$, we have $\|r\|\alpha q \leq o\left(\frac{q}{\sqrt{\log n}}\right)$, and
a sample from $D_{\|r\|\alpha q}$ is $< q/8$ with probability $\geq 1 - n^{-\omega(1)}$.

\Rightarrow We know $r^T e + \lfloor q/2 \rfloor M$ over the integers.
Decryption correctness

Correctness

Assume that $\alpha \leq o\left(\frac{1}{\sqrt{m\log n}}\right)$.
Then, with probability $\geq 1 - n^{-\omega(1)}$, it correctly decrypts.

We have

$$v - u^T s = r^T e + \lfloor q/2 \rfloor M \mod q.$$

As $e \sim D_{\mathbb{Z}, \alpha q}^m$, we expect $\langle r, e \rangle$ to behave like $D_{\|r\|\alpha q}$.

As $\|r\| \leq \sqrt{m}$, we have $\|r\|\alpha q \leq o\left(\frac{q}{\sqrt{\log n}}\right)$, and

a sample from $D_{\|r\|\alpha q}$ is $< q/8$ with probability $\geq 1 - n^{-\omega(1)}$.

\Rightarrow We know $r^T e + \lfloor q/2 \rfloor M$ over the integers.
Decryption correctness

Correctness

Assume that $\alpha \leq o\left(\frac{1}{\sqrt{m \log n}}\right)$.
Then, with probability $\geq 1 - n^{-\omega(1)}$, it correctly decrypts.

We have

$$v - u^T s = r^T e + \lfloor q/2 \rfloor M \mod q.$$

As $e \sim D_{\mathbb{Z}, \alpha q}^m$, we expect $\langle r, e \rangle$ to behave like $D_{\|r\|\alpha q}$.

As $\|r\| \leq \sqrt{m}$, we have $\|r\|\alpha q \leq o\left(\frac{q}{\sqrt{\log n}}\right)$, and

a sample from $D_{\|r\|\alpha q}$ is $< q/8$ with probability $\geq 1 - n^{-\omega(1)}$.

\Rightarrow We know $r^T e + \lfloor q/2 \rfloor M$ over the integers.
IND-CPA Security

Security

Assume that \(m = \Omega(n \log q) \). Then any (IND-CPA) attacker may be turned into an algorithm for LWE\(_{n,q,\alpha}\).

Fake security experiment

Challenger uses and gives to the attacker a uniform pair \((A, b)\) (instead of \(b = A \cdot s + e\)).

- If attacker behaves differently than in real security experiment, it can be used to solve LWE.
- In fake experiment, \((A, b, r^T A, r^T b)\) is \(\approx\) uniform, hence \(Enc(0)\) and \(Enc(1)\) follow \(\approx\) the same distribution.
IND-CPA Security

Assume that $m = \Omega(n \log q)$. Then any (IND-CPA) attacker may be turned into an algorithm for LWE$_{n,q,\alpha}$.

Fake security experiment

Challenger uses and gives to the attacker a uniform pair (A, b) (instead of $b = A \cdot s + e$).

1. If attacker behaves differently than in real security experiment, it can be used to solve LWE.
2. In fake experiment, $(A, b, r^T A, r^T b)$ is \approx uniform, hence $\text{ENC}(0)$ and $\text{ENC}(1)$ follow (\approx) the same distribution.
IND-CPA Security

Security
Assume that \(m = \Omega(n \log q) \). Then any (IND-CPA) attacker may be turned into an algorithm for LWE_{n,q,\alpha}.

Fake security experiment
Challenger uses and gives to the attacker a uniform pair \((A, b)\) (instead of \(b = A \cdot s + e\)).

1. If attacker behaves differently than in real security experiment, it can be used to solve LWE.
2. In fake experiment, \((A, b, r^T A, r^T b)\) is \(\approx\) uniform, hence \(\text{ENC}(0)\) and \(\text{ENC}(1)\) follow \(\approx\) the same distribution.
IND-CPA Security

Security

Assume that $m = \Omega(n \log q)$. Then any (IND-CPA) attacker may be turned into an algorithm for $\text{LWE}_{n,q,\alpha}$.

Fake security experiment

Challenger uses and gives to the attacker a uniform pair (A, b) (instead of $b = A \cdot s + e$).

1. If attacker behaves differently than in real security experiment, it can be used to solve LWE.
2. In fake experiment, $(A, b, r^T A, r^T b)$ is \approx uniform, hence $\text{ENC}(0)$ and $\text{ENC}(1)$ follow (\approx) the same distribution.
Setting the parameters: \(n, m, \alpha, q \)

- Correctness: \(\alpha \leq o\left(\frac{1}{\sqrt{m \log n}}\right) \)
- Reducing LWE to IND-CPA security: \(m \geq \Omega(n \log q) \)

1. Set \(\alpha \) as large as possible (\(\alpha \) impacts security)
2. Set \(m \) as small as possible (\(m \) impacts efficiency)
3. Set \(n \) and \(q \) so that LWE\(_{n,q,\alpha} \) is sufficiently hard to solve

Here: \(\alpha = \tilde{\Theta}(\sqrt{n}) \), \(m = \tilde{\Theta}(n) \) and \(q = \tilde{\Theta}(n) \).

This is not very practical... ciphertext expansion: \(\tilde{\Theta}(n) \).
Setting the parameters: n, m, α, q

- Correctness: $\alpha \leq o\left(\frac{1}{\sqrt{m \log n}}\right)$
- Reducing LWE to IND-CPA security: $m \geq \Omega(n \log q)$

1. Set α as large as possible (α impacts security)
2. Set m as small as possible (m impacts efficiency)
3. Set n and q so that $\text{LWE}_{n,q,\alpha}$ is sufficiently hard to solve

Here: $\alpha = \widetilde{\Theta}(\sqrt{n})$, $m = \widetilde{\Theta}(n)$ and $q = \widetilde{\Theta}(n)$.

This is not very practical... ciphertext expansion: $\widetilde{\Theta}(n)$.

Damien Stehlé
Setting the parameters: \(n, m, \alpha, q \)

- Correctness: \(\alpha \leq o\left(\frac{1}{\sqrt{m \log n}}\right) \)
- Reducing LWE to IND-CPA security: \(m \geq \Omega(n \log q) \)

1. Set \(\alpha \) as large as possible \((\alpha \text{ impacts security})\)
2. Set \(m \) as small as possible \((m \text{ impacts efficiency})\)
3. Set \(n \) and \(q \) so that LWE\(_{n,q,\alpha} \) is sufficiently hard to solve

Here: \(\alpha = \tilde{\Theta}(\sqrt{n}), \ m = \tilde{\Theta}(n) \) and \(q = \tilde{\Theta}(n) \).

This is not very practical... ciphertext expansion: \(\tilde{\Theta}(n) \).
Multi-bit Regev

- **Parameters:** n, m, q, α, ℓ.
- **Keys:** $sk = S \in \mathbb{Z}_q^{n \times \ell}$ and $pk = (A, B)$, with $B = AS + E$.
- **ENC($M \in \{0, 1\}^\ell$):** Let $r \leftarrow U(\{0, 1\}^m)$,

 \[
 u^T = \begin{bmatrix} A \\ \hline \end{bmatrix}, \quad v^T = \begin{bmatrix} B + [q/2] \cdot M^T \\ \hline \end{bmatrix}.
 \]

- **DEC(u, v):** Compute $v^T - u^T S$ (modulo q).

Asymptotic performance, for $\ell = n$

- Ciphertext expansion: $\tilde{\Theta}(1)$
- Processing time: $\tilde{\Theta}(n)$ per message bit
- Key size: $\tilde{\Theta}(n^2)$
Multi-bit Regev

- **Parameters:** n, m, q, α, ℓ.
- **Keys:** $sk = S \in \mathbb{Z}_q^{n \times \ell}$ and $pk = (A, B)$, with $B = AS + E$.
- **ENC($M \in \{0, 1\}^\ell$):** Let $r \leftarrow U(\{0, 1\}^m)$,

$$u^T = A^T, \quad v^T = B^T + \lfloor q/2 \rfloor \cdot M^T.$$

- **DEC(u, v):** Compute $v^T - u^T S$ (modulo q).

Asymptotic performance, for $\ell = n$

- Ciphertext expansion: $\tilde{\Theta}(1)$
- Processing time: $\tilde{\Theta}(n)$ per message bit
- Key size: $\tilde{\Theta}(n^2)$
More on Regev’s encryption

- This scheme is homomorphic for addition: add ciphertexts
- And also for multiplication: tensor ciphertexts
 ⇒ Can be turned into FHE [Br12]

- Enc and KeyGen may be swapped: dual-Regev [GePeVa08]
 ⇒ This allows ID-based encryption, and more

May be turned into a practical scheme [Pe14]

- Use Ring-LWE rather than LWE: more efficient
- Ciphertext expansion can be lowered to essentially 1
- IND-CCA security can be achieved efficiently in the ROM
More on Regev’s encryption

- This scheme is homomorphic for addition: add ciphertexts
- And also for multiplication: tensor ciphertexts
 \[\Rightarrow \text{Can be turned into FHE} \quad [Br12] \]
- Enc and KeyGen may be swapped: dual-Regev [GePeVa08]
 \[\Rightarrow \text{This allows ID-based encryption, and more} \]
- May be turned into a practical scheme \quad [Pe14]
 - Use Ring-LWE rather than LWE: more efficient
 - Ciphertext expansion can be lowered to essentially 1
 - IND-CCA security can be achieved efficiently in the ROM
More on Regev’s encryption

- This scheme is homomorphic for addition: add ciphertexts
- And also for multiplication: tensor ciphertexts
 ⇒ Can be turned into FHE \([Br12]\)

- Enc and KeyGen may be swapped: dual-Regev \([GePeVa08]\)
 ⇒ This allows ID-based encryption, and more

May be turned into a practical scheme \([Pe14]\)

- Use Ring-LWE rather than LWE: more efficient
- Ciphertext expansion can be lowered to essentially 1
- IND-CCA security can be achieved efficiently in the ROM
Road-map

- Definition of the LWE problem
- Regev’s encryption scheme
- **Lattice problems**
- Hardness of LWE
- Equivalent problems
Euclidean lattices

Lattice $L = \sum_{i=1}^{n} \mathbb{Z}b_i \subset \mathbb{R}^n$, for some linearly indep. b_i’s.

Minimum $\lambda(L) = \min (\|b\| : b \in L \setminus 0)$.

SVP_γ: Given as input a basis of L, find $b \in L$ s.t. $0 < \|b\| \leq \gamma \cdot \lambda(L)$.

BDD_γ: Given as input a basis of L, and a vector t s.t. $\text{dist}(t, L) < \frac{1}{2\gamma} \cdot \lambda(L)$, find $b \in L$ minimizing $\|b - t\|$.
Euclidean lattices

Lattice \(L = \sum_{i=1}^{n} \mathbb{Z}b_i \subset \mathbb{R}^n \), for some linearly indep. \(b_i \)'s.

Minimum \(\lambda(L) = \min (\|b\| : b \in L \setminus \{0\}) \).

SVP\(\gamma \): Given as input a basis of \(L \), find \(b \in L \) s.t. \(0 < \|b\| \leq \gamma \cdot \lambda(L) \).

BDD\(\gamma \): Given as input a basis of \(L \), and a vector \(t \) s.t. \(\text{dist}(t, L) < \frac{1}{2\gamma} \cdot \lambda(L) \), find \(b \in L \) minimizing \(\|b - t\| \).
Euclidean lattices

Lattice $L = \sum_{i=1}^{n} \mathbb{Z}b_i \subset \mathbb{R}^n$, for some linearly indep. b_i’s.

Minimum $\lambda(L) = \min (\|b\| : b \in L \setminus \{0\})$.

SVP_γ: Given as input a basis of L, find $b \in L$ s.t. $0 < \|b\| \leq \gamma \cdot \lambda(L)$.

BDD_γ: Given as input a basis of L, and a vector t s.t. $\text{dist}(t, L) < \frac{1}{2\gamma} \cdot \lambda(L)$, find $b \in L$ minimizing $\|b - t\|$.
Best known (classical/quantum) algorithms

SVP γ: Given L, find $b \in L$ s.t. $0 < \|b\| \leq \gamma \cdot \lambda(L)$.

BDD γ: Given L and $t \in \mathbb{R}^n$ s.t. $\text{dist}(t, L) < \frac{1}{2\gamma} \cdot \lambda(L)$, find $b \in L$ minimizing $\|b - t\|$.

For small γ: [AgDaReSD15]
- Time $2^{n/2}$.
- In practice: up to $n \approx 120$ (with other algorithms).

For $\gamma = n^{\Omega(1)}$: [ScEu91, HaPuSt11]
- Time $\left(\frac{n}{\log \gamma}\right)^{O\left(\frac{n}{\log \gamma}\right)}$.
- In practice, we can reach $\gamma \approx 1.01^n$ [ChNg11].

https://github.com/dstehle/fplll
Best known (classical/quantum) algorithms

\textbf{SVP}_\gamma: \text{ Given } L, \text{ find } b \in L \text{ s.t. } 0 < \|b\| \leq \gamma \cdot \lambda(L).

\textbf{BDD}_\gamma: \text{ Given } L \text{ and } t \in \mathbb{R}^n \text{ s.t. } \text{dist}(t, L) < \frac{1}{2\gamma} \cdot \lambda(L),
\text{ find } b \in L \text{ minimizing } \|b - t\|.

For small \(\gamma \): \cite{AgDaReSD15}

- Time \(2^{n/2} \).
- In practice: up to \(n \approx 120 \) (with other algorithms).

For \(\gamma = n^{\Omega(1)} \): \cite{ScEu91, HaPuSt11}

- Time \(\left(\frac{n}{\log \gamma} \right)^{O\left(\frac{n}{\log \gamma} \right)} \).
- In practice, we can reach \(\gamma \approx 1.01^n \) \cite{ChNg11}.

https://github.com/dstehle/fplll
Best known (classical/quantum) algorithms

SVPγ: Given L, find $b \in L$ s.t. $0 < \|b\| \leq \gamma \cdot \lambda(L)$.

BDDγ: Given L and $t \in \mathbb{R}^n$ s.t. $\text{dist}(t, L) < \frac{1}{2\gamma} \cdot \lambda(L)$, find $b \in L$ minimizing $\|b - t\|$.

For small γ:
- Time $2^{n/2}$.
- In practice: up to $n \approx 120$ (with other algorithms).

For $\gamma = n^{\Omega(1)}$:
- BKZ [ScEu91,HaPuSt11]
 - Time $\left(\frac{n}{\log \gamma}\right)^O\left(\frac{n}{\log \gamma}\right)$.
 - In practice, we can reach $\gamma \approx 1.01^n$ [ChNg11].

https://github.com/dstehle/fplll
GapSVP$_\gamma$

Given a basis of a lattice L and $d > 0$, assess whether

$$\lambda(L) \leq d \quad \text{or} \quad \lambda(L) > \gamma \cdot d.$$

- **NP-hard** when $\gamma \leq O(1)$ (random. red.) [Aj98,HaRe07]
- **In \ NP \cap \text{coNP}** when $\gamma \geq \sqrt{n}$ [GoGo98,AhRe04]
- **In \ P** when $\gamma \geq \exp \left(n \cdot \frac{\log \log n}{\log n} \right)$ (BKZ)
Hardness of SVP

GapSVP\(_\gamma\)

Given a basis of a lattice \(L\) and \(d > 0\), assess whether

\[
\lambda(L) \leq d \quad \text{or} \quad \lambda(L) > \gamma \cdot d.
\]

- **NP-hard** when \(\gamma \leq O(1)\) (random. red.) \([Aj98,HaRe07]\)
- In **NP\cap coNP** when \(\gamma \geq \sqrt{n}\) \([GoGo98,AhRe04]\)
- In **P** when \(\gamma \geq \exp\left(n \cdot \frac{\log \log n}{\log n}\right)\) \((BKZ)\)
Road-map

- Definition of the LWE problem
- Regev’s encryption scheme
- Lattice problems
- **Hardness of LWE**
- Equivalent problems

Each LWE sample gives $\approx \log_2 \frac{1}{\alpha}$ bits of data on secret s.

With a few samples, s is uniquely specified. How to find it?
Exhaustive search

Assume we are given A and $b = As + e$, for some e whose entries are $\approx \alpha q$.
We want to find s.

1st variant:
- Try all the possible $s \in \mathbb{Z}_q^n$.
- Test if $b - A \cdot s$ is small.

\Rightarrow Cost $\approx q^n$.

2nd variant:
- Try all the possible n first error terms.
- Recover the corresponding s, by linear algebra.
- Test if $b - A \cdot s$ is small.

\Rightarrow Cost $\approx (\alpha q \sqrt{\log n})^n$.
Assume we are given A and $b = As + e$, for some e whose entries are $\approx \alpha q$. We want to find s.

1st variant:
- Try all the possible $s \in \mathbb{Z}_{q}^{n}$.
- Test if $b - A \cdot s$ is small.

\Rightarrow Cost $\approx q^{n}$.

2nd variant:
- Try all the possible n first error terms.
- Recover the corresponding s, by linear algebra.
- Test if $b - A \cdot s$ is small.

\Rightarrow Cost $\approx (\alpha q \sqrt{\log n})^{n}$.
Solving LWE with BKZ (1/2)

Assume we are given A and $b = As + e$, for some e whose entries are $\approx \alpha q$. We want to find s.

Let $L_A = \{x \in \mathbb{Z}^m : \exists s \in \mathbb{Z}^n, x = As \lfloor q \rfloor\} = AZ_q^n + q\mathbb{Z}^m$.

- L_A is a lattice of dimension m.
- Whp, its minimum satisfies $\lambda(L) \approx \sqrt{m} \cdot q^{1-\frac{n}{m}}$.
- We have $\text{dist}(b, L) = \|e\| \approx \sqrt{m} \alpha q$.

LWE reduces to BDD

This is a BDD instance in dim m with $\gamma \approx q^{-\frac{n}{m}}/\alpha$.
Solving LWE with BKZ (1/2)

Assume we are given A and $b = As + e$, for some e whose entries are $\approx \alpha q$. We want to find s.

Let $L_A = \{ x \in \mathbb{Z}^m : \exists s \in \mathbb{Z}^n, x = As \ [q] \} = A\mathbb{Z}_q^n + q\mathbb{Z}^m$.

- L_A is a lattice of dimension m.
- Whp, its minimum satisfies $\lambda(L) \approx \sqrt{m} \cdot q^{1 - \frac{n}{m}}$.
- We have $\text{dist}(b, L) = \|e\| \approx \sqrt{m} \alpha q$.

LWE reduces to BDD

This is a BDD instance in dim m with $\gamma \approx q^{-\frac{n}{m}} / \alpha$.
Solving LWE with BKZ (1/2)

Assume we are given A and $b = As + e$, for some e whose entries are $\approx \alpha q$. We want to find s.

Let $L_A = \{x \in \mathbb{Z}^m : \exists s \in \mathbb{Z}^n, x = As \pmod{q}\} = A\mathbb{Z}_q^n + q\mathbb{Z}^m$.

- L_A is a lattice of dimension m.
- Whp, its minimum satisfies $\lambda(L) \approx \sqrt{m} \cdot q^{1-n/m}$.
- We have $\text{dist}(b, L) = \|e\| \approx \sqrt{m\alpha q}$.

LWE reduces to BDD

This is a BDD instance in dim m with $\gamma \approx q^{-n/m}/\alpha$.
Assume we are given A and $b = As + e$, for some e whose entries are $\approx \alpha q$. We want to find s.

Let $L_A = \{ x \in \mathbb{Z}^m : \exists s \in \mathbb{Z}^n, x = As \ [q] \} = A\mathbb{Z}_q^n + q\mathbb{Z}^m$.

- L_A is a lattice of dimension m.
- Whp, its minimum satisfies $\lambda(L) \approx \sqrt{m} \cdot q^{1-\frac{n}{m}}$.
- We have $\text{dist}(b, L) = \|e\| \approx \sqrt{m\alpha q}$.

LWE reduces to BDD

This is a BDD instance in dim m with $\gamma \approx q^{-\frac{n}{m}}/\alpha$.
Solving LWE with BKZ (2/2)

LWE reduces to BDD

This is a BDD instance in dim m with $\gamma \approx q^{-\frac{n}{m}}/\alpha$.

Cost of BKZ: $(\frac{m}{\log \gamma})^{O(\frac{m}{\log \gamma})}$, with $
\frac{\log \gamma}{m} = \frac{1}{m} \log \frac{1}{\alpha} - \frac{n \log q}{m^2}$.

Cost is minimized for $m \approx \frac{2n \log q}{\log \frac{1}{\alpha}}$.

Cost of BKZ to solve LWE

Time: $(\frac{n \log q}{\log^2 \alpha})^{O(\frac{n \log q}{\log^2 \alpha})}$.
Solving LWE with BKZ (2/2)

LWE reduces to BDD

This is a BDD instance in dim m with $\gamma \approx q^{-n/m}/\alpha$.

Cost of BKZ: $(\frac{m}{\log \gamma})^{O\left(\frac{m}{\log \gamma}\right)}$, with $\frac{\log \gamma}{m} = \frac{1}{m} \log \frac{1}{\alpha} - \frac{n \log q}{m^2}$.

Cost is minimized for $m \approx \frac{2n \log q}{\log \frac{1}{\alpha}}$.

Cost of BKZ to solve LWE

Time: $\left(\frac{n \log q}{\log^2 \alpha}\right)^{O\left(\frac{n \log q}{\log^2 \alpha}\right)}$.
Assume that $\alpha q \geq 2\sqrt{n}$.

[Re05]

If q is prime and $\leq n^{O(1)}$, then there exists a quantum polynomial-time reduction from SVP_γ in $\text{dim } n$ to $\text{LWE}_{n,q,\alpha}$, with $\gamma \approx n/\alpha$.

[BrLaPeReSt13]

If $q \leq n^{O(1)}$, then there exists a classical polynomial-time reduction from GapSVP_γ in $\text{dim } \sqrt{n}$ to $\text{LWE}_{n,q,\alpha}$, with $\gamma \approx n/\alpha$.

- The two results are incomparable.
- Best achievable γ here: n.
- In the case of Regev’s encryption, we get $\gamma \approx n^{3/2}$.
- One can use BDD_γ instead (with a different γ).
Assume that $\alpha q \geq 2\sqrt{n}$.

[Re05]
If q is prime and $\leq n^O(1)$, then there exists a quantum polynomial-time reduction from SVP_γ in $\text{dim } n$ to $\text{LWE}_{n,q,\alpha}$, with $\gamma \approx n/\alpha$.

[BrLaPeReSt13]
If q is $\leq n^O(1)$, then there exists a classical polynomial-time reduction from GapSVP_γ in $\text{dim } \sqrt{n}$ to $\text{LWE}_{n,q,\alpha}$, with $\gamma \approx n/\alpha$.

- The two results are incomparable.
- Best achievable γ here: n.
- In the case of Regev's encryption, we get $\gamma \approx n^{3/2}$.
- One can use BDD_γ instead (with a different γ).
Assume that $\alpha q \geq 2\sqrt{n}$.

[Re05]

If q is prime and $\leq n^{O(1)}$, then there exists a *quantum* polynomial-time reduction from SVP_γ in $\text{dim } n$ to $\text{LWE}_{n,q,\alpha}$, with $\gamma \approx \frac{n}{\alpha}$.

[BrLaPeReSt13]

If q is $\leq n^{O(1)}$, then there exists a *classical* polynomial-time reduction from GapSVP_γ in $\text{dim } \sqrt{n}$ to $\text{LWE}_{n,q,\alpha}$, with $\gamma \approx \frac{n}{\alpha}$.

- The two results are incomparable.
- Best achievable γ here: n.
- In the case of Regev’s encryption, we get $\gamma \approx n^{3/2}$.
- One can use BDD_γ instead (with a different γ).
Road-map

- Definition of the LWE problem
- Regev’s encryption scheme
- Lattice problems
- Hardness of LWE
- Equivalent problems
LWE variants

Numerous variants have been showed to be at least as hard as LWE, up to polynomial factors in the noise rate α:

(Polynomial in n, $\log q$ and possibly in the number of samples m.)

- When s is distributed from the error distribution.
- When s is binary with sufficient entropy.
- When e is uniform in a hypercube.
- When e corresponds to a deterministic rounding of As.
- When A is binary (modulo q).
- When some extra information on e is provided.
- When the first component of e is zero.
LWE in dimension 1

1-dimensional LWE \[\text{[BoVe96]}\]

With non-negl. prob. over \(s \leftarrow U(\mathbb{Z}_q)\): distinguish between

\[(a, a \cdot s + e) \text{ and } (a, b) \quad (\text{over } \mathbb{Z}_q^2),\]

where \(a, b \leftarrow U(\mathbb{Z}_q), e \leftarrow D_{\mathbb{Z},\alpha q}\).

Hardness of 1-dim LWE \[\text{[BrLaPeReSt13]}\]

For any \(n, q, n', q'\) with \(n \log q \leq n' \log q'\):

there exists a polynomial-time reduction from LWE\(_{n,q,\alpha}\) to LWE\(_{n',q',\alpha'}\) for some \(\alpha' \leq \alpha \cdot (n \log q)^{O(1)}\).

\[\Rightarrow \text{LWE}_{1,q^n} \text{ is no easier than LWE}_{n,q}.\]
Approximate gcd

AGCD\(_{D,N,\alpha}\) [HG01]

With non-negl. prob. over \(p \leftarrow D\), distinguish between

\[u \quad \text{and} \quad q \cdot p + r \quad \text{(over } \mathbb{Z}),\]

where \(u \leftarrow U([0, N))\), \(q \leftarrow U([0, \frac{N}{p}))\), \(r \leftarrow \lfloor D_\alpha p \rfloor\).

Hardness of AD (Informal) [ChSt15]

AGCD\(_{D,N,\alpha}\) is computationally equivalent to LWE\(_{n,q,\alpha}\), for some \(D\) of mean \(\approx q^n\) and some \(N \approx q^{2n}\).
Conclusion

LWE:
- LWE is hard for almost all instances.
- It seems exponentially hard to solve, even quantumly.
- It is a rich/expressive problem, convenient for cryptographic design.

Lattices:
- LWE hardness comes from lattice problems.
- We can design lattice-based cryptosystems without knowing lattices!
Exciting topics I did not mention

- The Small Integer Solution problem (SIS) ⇒ Digital signatures.
- Ideal lattices, Ring-LWE, Ring-SIS, NTRU ⇒ Using polynomial rings (a.k.a. structured matrices) to get more efficient constructions.
- Implementation of lattice-based primitives.

These will be addressed in Léo’s talk (Friday morning), my second talk (Friday afternoon) and Tim’s talk (Friday afternoon).
Open problems: foundations

If q is prime and $\leq n^{O(1)}$, then there exists a **quantum** polynomial-time reduction from SVP_γ in $\text{dim } n$ to $\text{LWE}_{n,q,\alpha}$, with $\gamma \approx n/\alpha$.

If q is $\leq n^{O(1)}$, then there exists a **classical** polynomial-time reduction from GapSVP_γ in $\text{dim } \sqrt{n}$ to $\text{LWE}_{n,q,\alpha}$, with $\gamma \approx n/\alpha$.

- Does there exist a classical reduction from n-dimensional $\text{SVP}_\gamma/\text{BDD}_\gamma$ to $\text{LWE}_{n,q,\alpha}$?
- Does there exist a quantum algorithm for $\text{LWE}_{n,q,\alpha}$ that runs in time $2^{\sqrt{n}}$ (when $q \leq n^{O(1)}$)?
- Is LWE easy for some $\alpha = 1 / n^{O(1)}$?
- Can we reduce factoring/DL to LWE?
Open problems: foundations

If q is prime and $\leq n^{O(1)}$, then there exists a **quantum** polynomial-time reduction from SVP_γ in $\text{dim } n$ to $\text{LWE}_{n,q,\alpha}$, with $\gamma \approx n/\alpha$.

If q is $\leq n^{O(1)}$, then there exists a **classical** polynomial-time reduction from GapSVP_γ in $\text{dim } \sqrt{n}$ to $\text{LWE}_{n,q,\alpha}$, with $\gamma \approx n/\alpha$.

- Does there exist a classical reduction from n-dimensional $\text{SVP}_\gamma/\text{BDD}_\gamma$ to $\text{LWE}_{n,q,\alpha}$?
- Does there exist a quantum algorithm for $\text{LWE}_{n,q,\alpha}$ that runs in time $2^{\sqrt{n}}$ (when $q \leq n^{O(1)}$)?
- Is LWE easy for some $\alpha = 1/n^{O(1)}$?
- Can we reduce factoring/DL to LWE?
Open problems: foundations

If q is prime and $\leq n^{O(1)}$, then there exists a **quantum** polynomial-time reduction from SVP_γ in $\text{dim } n$ to $\text{LWE}_{n,q,\alpha}$, with $\gamma \approx n/\alpha$.

If q is $\leq n^{O(1)}$, then there exists a **classical** polynomial-time reduction from GapSVP_γ in $\text{dim } \sqrt{n}$ to $\text{LWE}_{n,q,\alpha}$, with $\gamma \approx n/\alpha$.

- Does there exist a classical reduction from n-dimensional $\text{SVP}_\gamma/\text{BDD}_\gamma$ to $\text{LWE}_{n,q,\alpha}$?
- Does there exist a quantum algorithm for $\text{LWE}_{n,q,\alpha}$ that runs in time $2^{\sqrt{n}}$ (when $q \leq n^{O(1)}$)?
- Is LWE easy for some $\alpha = 1/n^{O(1)}$?
- Can we reduce factoring/DL to LWE?
Open problems: foundations

If q is prime and $\leq n^{O(1)}$, then there exists a **quantum** polynomial-time reduction from SVP_γ in $\text{dim } n$ to $\text{LWE}_{n,q,\alpha}$, with $\gamma \approx n/\alpha$.

If q is $\leq n^{O(1)}$, then there exists a **classical** polynomial-time reduction from GapSVP_γ in $\text{dim } \sqrt{n}$ to $\text{LWE}_{n,q,\alpha}$, with $\gamma \approx n/\alpha$.

- Does there exist a classical reduction from n-dimensional $\text{SVP}_\gamma/\text{BDD}_\gamma$ to $\text{LWE}_{n,q,\alpha}$?
- Does there exist a quantum algorithm for $\text{LWE}_{n,q,\alpha}$ that runs in time $2^{\sqrt{n}}$ (when $q \leq n^{O(1)}$)?
- Is LWE easy for some $\alpha = 1 / n^{O(1)}$?
- Can we reduce factoring/DL to LWE?
Open problems: cryptanalysis

LWE-based cryptography is based on GapSVP_γ for $\gamma \geq n$. No NP-hardness here...

- Can we solve SVP_γ in $\text{poly}(n)$-time for some $\gamma = n^{O(1)}$?
- And with a quantum computer?
- Can we do better than BKZ’s $(\frac{n}{\log \gamma})^{O(\frac{n}{\log \gamma})}$ run-time, for some γ?
- What are the practical limits?

http://www.latticechallenge.org
Open problems: cryptanalysis

LWE-based cryptography is based on GapSVP_γ for $\gamma \geq n$.
No NP-hardness here...

- Can we solve SVP_γ in $\text{poly}(n)$-time for some $\gamma = n^{O(1)}$?
- And with a quantum computer?
- Can we do better than BKZ’s $(\frac{n}{\log \gamma})^{O\left(\frac{n}{\log \gamma}\right)}$ run-time, for some γ?
- What are the practical limits?

http://www.latticechallenge.org
Open problems: cryptanalysis

LWE-based cryptography is based on GapSVP_γ for $\gamma \geq n$. No NP-hardness here...

- Can we solve SVP_γ in $\text{poly}(n)$-time for some $\gamma = n^{O(1)}$?
- And with a quantum computer?
- Can we do better than BKZ’s $\left(\frac{n}{\log \gamma}\right)^{O\left(\frac{n}{\log \gamma}\right)}$ run-time, for some γ?
- What are the practical limits?

http://www.latticechallenge.org
Open problems: cryptanalysis

LWE-based cryptography is based on \(\text{GapSVP}_\gamma \) for \(\gamma \geq n \).
No NP-hardness here...

- Can we solve \(\text{SVP}_\gamma \) in \(\text{poly}(n) \)-time for some \(\gamma = n^{O(1)} \)?
- And with a quantum computer?
- Can we do better than BKZ’s \(\left(\frac{n}{\log \gamma} \right)^{O\left(\frac{n}{\log \gamma}\right)} \) run-time, for some \(\gamma \)?
- What are the practical limits?

http://www.latticechallenge.org
Open problems: practice

There exist practical lattice-based signature and encryption schemes.

- Can lattice-based primitives outperform other approaches in some contexts?
- What about side-channel cryptanalysis?
- Can advanced lattice-based primitives be made practical? Attribute-based encryption? Homomorphic encryption?
Open problems: practice

There exist practical lattice-based signature and encryption schemes.

- Can lattice-based primitives outperform other approaches in some contexts?
- What about side-channel cryptanalysis?
- Can advanced lattice-based primitives be made practical? Attribute-based encryption? Homomorphic encryption?
Open problems: practice

There exist practical lattice-based signature and encryption schemes.

- Can lattice-based primitives outperform other approaches in some contexts?
- What about side-channel cryptanalysis?
- Can advanced lattice-based primitives be made practical?

Attribute-based encryption? Homomorphic encryption?
Open problems: practice

There exist practical lattice-based signature and encryption schemes.

- Can lattice-based primitives outperform other approaches in some contexts?
- What about side-channel cryptanalysis?
- Can advanced lattice-based primitives be made practical?
 Attribute-based encryption? Homomorphic encryption?

AgDaReSD15 D. Aggarwal, D. Dadush, O. Regev, N. Stephens-Davidowitz: Solving the Shortest Vector Problem in 2^n Time via Discrete Gaussian Sampling. Available on ARXIV.

Bibliography

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>GoVaWe13</td>
<td>S. Gorbunov, V. Vaikuntanathan, H. Wee</td>
<td>Attribute-based encryption for circuits. STOC 2013: 545-554.</td>
<td></td>
</tr>
</tbody>
</table>