On authenticated encryption and the CAESAR
competition

Joan DAEMEN

STMicroelectronics and Radboud University

Crypto summer school 2015
Sibenik, Croatia, May 31 - June 5, 2015

1/39

What is authenticated encryption?

Outline

What is authenticated encryption?

2/39

What is authenticated encryption (AE)?

m Messages and cryptograms

m M = (AD, P) message with associated data and plaintext

m M. = (AD, C) cryptogram with associated data and ciphertext
m All of M is authenticated but only P is encrypted

B wrapping: M to M,
B unwrapping: M to M

m Symmetric cryptography: same key used for both operations

m Authentication aspect

m unwrapping includes verification of M.

m if not valid, it returns an error L

m wrap operation adds redundancy: |C| > |P|

m often redundancy coded at the end of C: tag T

m Note: this is usually called AEAD

What is authenticated encryption?

Limitation of AE: traffic analysis

m Traffic analysis:
m length of messages
m number of messages
m Solution

m creating dummy messages
m random-length padding of plaintext
m to be done on higher layer

m AE scheme security should be independent from this layer

What is authenticated encryption?

Limitation of AE: need for message uniqueness

m Concrete AE proposals are deterministic

m Equal messages lead to equal cryptograms

m information leakage
m concern of replay attacks at unwrapping end

m Solution is using nonces (Number used only ONCE)

m impose that the AD is a nonce for the given key K
m often presented as a separate field N
m wrapping engine shall ensure (K, N) is unique

®m wrapping becomes stateful

m asimple message counter suffices

m From now on we always include a nonce N

What is authenticated encryption?

Functional behaviour

m Wrapping:
m state: K and past nonces N/
input: M = (N,AD, P)
output: Cor L
processing:
m if (NeN)return L
m else add N to AV and return C <— Wrap[K]|(N,AD, P)

m Unwrapping:
state: K
input: Mc = (N,AD, C)
output: Por L
processing:
m return Unwrap[K](N,AD, C): P if valid and L otherwise

What is authenticated encryption?

Sessions

m Session: cryptogram authenticates also previous messages
m full sequence of messages since the session started

m Additional protection against:

m insertion,

® omission,

m re-ordering of messages within a session
m Attention point: last message of session
m Alternative view:

m splits a long cryptogram in shorter ones
m intermediate tags

See [Bellare, Kohno and Namprempre, ACM 2003], [KT, SAC 2011], [Boldyreva,
Degabriele, Paterson, Stam, EC 2012] and [Hoang, Reyhanitabar, Rogaway and Vizar,
2015]

7139

What is authenticated encryption?

Functional behaviour, with sessions

m Initialization of stateful session object D

m state: past nonces A (may be omitted for unwrapping)
m input: key K, nonce N
B processing:

m if (NeN)return L

m else add N to AV and create D with D.S <« Init(K, N)

m D.S will be updated during the session
m Wrapping
m return C() < D.Wrap(AD(), p(1)
m this updates D.S
m Unwrapping
m return D.Unwrap(AD") c()): p() or |
m in case of no error, this updates D.S
m session may be aborted after specific number of errors

An ideal AE scheme

Outline

An ideal AE scheme

9/39

An ideal AE scheme

An ideal AE scheme

m Separate fixed-length tag, so M. = (N,AD,C, T)
m Functional components: random oracle RO
m variable output length, implied by the context
B RO¢(-) = RO(:||1) for encryption
B ROq(-) = RO(:||0) for tag computation
m Wrapping
m if (Ne N)itreturn L
m C < RO(K||N||AD) & P
m T < ROq(K||N||AD||P)
m Unwrapping
m P+ RO(K||N||AD) & C
m T+ ROq(K||N||AD||P)
m If (T' #T) return L, else return P

m Note: RO input shall be uniquely decodable in K, N AD and P

10/39

Ideal AE scheme, now supporting sessions

m Initialization

m if (NeN)itreturn L
m D.S <« K||N

m Wrapping of M() = (Ap() p(i))
m D.S< D. S||AD J||1 and then c() <~ RO(D.S) @ P

m D.5S < D.S||P?|jo and then T() «~ RO(D.S)
m return (C(), 7(0))

m Unwrapping of MY = (ap(), (), 7))

save current state in case of error: ' < D.S

D.S < D.5||AD) |1 and then P() «— RO(D.S) & c()
D.S « D.S||P()|jo and then T < RO(D.S)

if (r = 7)) return (0,

else D.S < S’ and then return L

m Note: RO input shall be uniquely decodable in kK, N AD") and p()

11/39

An ideal AE scheme

Security of our ideal AE scheme

m Attack model: adversary can adaptively query:
® Init, respecting nonce uniqueness (not counted),
m D.Wrap (qw times) and D.Unwrap (g, times)
® RO(x): n times
m Input to RO(K||-) never repeats: outputs are uniformly random
m intra-session: each input to RO is longer than previous one
m inter-session: first part of RO input (N, K) never repeated
m So cryptograms C) and tags T() are uniformly random

12/39

An ideal AE scheme

Security of our ideal AE scheme (cont’d)

m Forgery:

m building sequence of valid cryptograms Mgl) . MEZ)
m not obtained from calls to wrap for some M(1) .. M(©)

m Privacy break:

m learning on plaintext bits of Mg)

m without unwrapping all of Mf:l) .. .Mé

f)
m Complete security breakdown: key recovery
m single target key: getting one specific key
m multiple target: getting one key out of m target keys

An ideal AE scheme

Security of our ideal AE scheme (cont’d 2)

m Forgery
m best strategy: send random but well-formatted cryptograms
m success probability for g, attempts: g,2~!"

m Privacy break
m best strategy at unwrap: send cryptograms with modified C; or T;
m success probability for g, attempts: g,2~ "

m Key retrieval

best strategy: exhaustive key search
m single target: success probability for n key guesses ~ n2~ Il

m multi-target: success probability for n key guesses < (m+1)n2~ |
m Countermeasure against multi-target security erosion: global nonce

® Summary:
m 1out of m keys recovery after 2/KI=108:(m+1) offline calls to RO(-)
m single privacy break/forgery after 2/l online calls to D.Unwrap

Two practical AE schemes

Outline

Two practical AE schemes

15/39

Two practical AE schemes

Instantiating our ideal AE scheme

m Replace RO by a sponge function like KEccak
m Thanks to RO-differentiating bound of sponge [T, EC 2008]:

m key recovery: min(2/Kl=10&:m 3¢/2) offline calls to KEccAk-f

m privacy break/forgery: min(2!"l, 2¢/2) online calls to KEccak-f

® ... assuming KEccAk-f has no exploitable properties

m tighter bounds in [Andreeva, Daemen, Mennink, Van Assche, FSE 2015]
m Practical scheme?

m D.S buffers all previous messages
m Input to our sponge includes all messages

16/39

Two practical AE schemes

Instantiating our ideal AE scheme

m Replace RO by a sponge function like KEccak
m Thanks to RO-differentiating bound of sponge [T, EC 2008]:
m key recovery: min(2/Kl=10&:m 3¢/2) offline calls to KEccAk-f
m privacy break/forgery: min(2!"l, 2¢/2) online calls to KEccak-f
® ... assuming KEccAk-f has no exploitable properties
m tighter bounds in [Andreeva, Daemen, Mennink, Van Assche, FSE 2015]
m Practical scheme?
m D.S buffers all previous messages
m Input to our sponge includes all messages
m Practical scheme!

m sponge operates sequentially on a b-bit state S
m update this state S on the fly
m instantiations: our designs KEYAK and KETJE

16/39

Two practical AE schemes

KEYAK [Keccak team + Ronny Van Keer]

m Four instances, all with 128 bits of security strength
m Architecture in multiple layers

m permutation: reduced-round KEccAak-f[1600] or KEcCAK-f[800]

m duplex construction: alternating input with output

m DuplexWrap mode: unique decodability and domain separation
(optional) KeyakLines mode: for parallelizable instances

m Generic security thanks to a combination of results:
m keyed sponge distinguishing bounds [Andreeva, Daemen, Mennink, Van
Assche, FSE 2015]
m security equivalence of sponge and duplex [KT, SAC 2011]
®m SPONGEWRAP generic security [KT, SAC 2011], adapted to DUPLEXWRAP
m sound tree hashing modes [KT, 1Jis 2013] for parallelized modes

DUPLEXWRAP layer
DUPLEXWRAP

m nonce-based authenticated encryption mode
m works on sequences of header-body pairs

18/39

DUPLEXWRAP layer
DUPLEXWRAP

m nonce-based authenticated encryption mode
m works on sequences of header-body pairs

m AW contains the key and must be unique, e.g.,
m A contains a session key used only once
m AW contains a key and a nonce
m in general: Al = K||N||AD®)

m B) = p) and fori > 1: A) = Ap)

18/39

Two practical AE schemes

DUPLEXWRAP layer

DUPLEXWRAP
m nonce-based authenticated encryption mode
m works on sequences of header-body pairs

- D

m AW contains the key and must be unique, e.g.,
m A contains a session key used only once
m AW contains a key and a nonce
m in general: Al = K||N||AD®)

m B() = P() and fori > 1:A) = AD)

18/39

Two practical AE schemes

DUPLEXWRAP layer

DUPLEXWRAP
m nonce-based authenticated encryption mode
m works on sequences of header-body pairs

m AW contains the key and must be unique, e.g.,
m A contains a session key used only once
m AW contains a key and a nonce
m in general: Al = K||N||AD®)

m B() = P() and fori > 1:A) = AD)

18/39

Two practical AE schemes

Inside DUPLEXWRAP

+00 +00 [+10 lo
E JFY Sy S py—Y

19/39

Two practical AE schemes

Inside DUPLEXWRAP

+00 00 [+01 +11 /|+10 10

+
E;dd [S ey —

19/39

Two practical AE schemes

Duplex layer
00 Zy ! A o2 Zy
| 4 | f | 4
m L1 6 m L] & A L &
T 0 u u I
f f f
c|]0
% N\ %
init. duplexing duplexing duplexing

f = KECCAK-p[1600, n, = 12] or f = KECCAK-p[800, n, = 12]

m 0;: a block of header, a block of body or an empty block
m Z;: a block of keystream, a block of tag or nothing
m blocks are up to p = b — ¢ — 4 bits long

Two practical AE schemes

KEYAK instances

| Name | Width b | Parallelism P |
RIVER KEYAK 800 1
LAKE KEYAK 1600 1
SEA KEYAK 1600 2
OCEAN KEYAK 1600 4

m 252-bit capacity: 128-bit security if data < 2'23 blocks [FSE 2015]
m RIVER KEYAK: block length up to 68 bytes
m other : block length up to 168 bytes
m Processing for LAKE KEYAK
m long messages: about 50 % of SHAKE128
m short messages: 24 rounds
m Working memory footprint
m reasonable on high- and middle-end platforms
m not ideal on constrained platforms

21/39

Two practical AE schemes

KETJE iKeccak team + Ronny Van Keer]

m Two instances

m Functionally similar to KEYAk
m Lightweight:

m using reduced-round Keccak-f[400] or KECCAK-f[200]
m small footprint
m low computation for short messages

m How?

m 96-bit or 128-bit security (incl. multi-target)
m more ad-hoc: MONKEYDUPLEX instead of duplex
m reliance on nonce uniqueness for key protection

22/39

Two practical AE schemes

KETJE instances and lightweight features

| feature | KETJEJR | KETJESR |
state size 25 bytes | 50 bytes
block size 2 bytes 4 bytes
processing computational cost
initialization per session | 12 rounds | 12 rounds
wrapping per block 1 round 1 round
8-byte tag comp. per message | 9 rounds | 7 rounds

Implementation considerations

Outline

Implementation considerations

24/39

Implementation considerations

Wish for being online

Online: being able to wrap or unwrap a message on-the-fly

Avoid having to buffer long messages
Online unwrapping implies returning unverified plaintext

® in most models unwrap never returns unverified plaintext
m two ways to tackle this problem

Tolerating Release of Unverified Plaintext (RUP)
m generates additional security notions and attacks [Andreeva,
Bogdanov, Luykx, Mennink, Mouha, and Yasuda, ASIACRYPT 2014]
| try to satisfy (some of) these: costly
m catastrophic fragmentation attack [Albrecht, Paterson, Watson, IEEE
S&P 2009]

Session approach:

m split long cryptogram into short ones, each with tag
m cryptograms short enough to fit the unwrap buffer

Wish for surviving sloppy nonce management

m Our assumption: K, N is unique per call to Init for wrapping

m users/implementers do not always respect this
m wish to limit consequences of nonce violation

m All online AE schemes leak in case of nonce violation

equality of first messages of session leaks in any case

if stream encryption: re-use of keystream

if block encryption: just equality of block(s) leaks

low entropy plaintexts become an issue

successful active attacks for quasi all proposed schemes

m | think there is consensus among experts on the following:

m hard to give an understandable security definition
m user shall be warned to not allow nonce violation
m calling an AE scheme nonce-misuse resistant gives wrong message

m Question: may nonce violation lead to full security breakdown?

26/39

Wish for parallelism

m AES is the official NIST and de facto world standard block cipher
m Modern CPUs have dedicated AES instruction, e.g. AES-NI on Intel

m pipelining: 1 cycle per round but latency of 8 to 16 cycles
m performing a single AES: 80 cycles
m performing 8 independent AES: 88 cycles

m Filling the pipeline requires parallelism

m Also non-AES based schemes can benefit from parallelism

m exploiting SIMD instructions
m exploiting multi-core

The CAESAR competition

Outline

The CAESAR competition

28/39

The CAESAR competition

m Public competition for authenticated ciphers
m consortium from academia and industry
m aims for portfolio instead of single winner
m CAESAR committee (secretary Dan Bernstein)
m Timeline
m submission deadline: March 15, 2014
m 57 submissions
m many block cipher modes
m about a dozen sponge-based,
m including our submissions: KETJE and KEYAK
m 3 rounds foreseen
m goal of round 1: reduction to 25 or so candidates
B we are experiencing some delay ...
m target end date: December 2017

http://competitions.cr.yp.to/caesar-submissions.html

29/39

http://competitions.cr.yp.to/caesar-submissions.html

The CAESAR competition

CAESAR candidate statistics (approximate numbers)

m Usage of primitives
m 12 permutations, 10 new
7 block ciphers, 1 new
m 6 tweakable block ciphers, all new
m about 20 submissions use AES

m Modes

m 16 block encryption modes, 12 new
m 30 stream encryption modes, 25 new
m popular modes:

m sponge-like

m Even-Mansour

m OCB

m COPA

m 9 out of 57 submissions already withdrawn and 1 more broken

30/39

The CAESAR competition

Permutation-based modes

m Mostly in two categories: sponge and Even-Mansour
m Sponge: b=r+c
m one (or more) serial data paths
stream encryption

[
® no permutation inverse needed (except in APE of PRIMATES)
m sub-type: non-hermetic approach

m full security breakdown under nonce violation
®m AES-round (AEGIS, Tiaoxin) and KEccAk-f round (Ketje)

m Even-Mansour: b =r

m permutation to build (tweakable) block cipher
m parallelizable modes as OCB, COPA, PMAC, CTR, OTR
m need for permutation inverse (except OTR)

31/39

The CAESAR competition

Blockcipher-based modes

m Those that require inverse
® aiming at nonce-misuse resistance and parallelism

m Those that don’t
®m mostly counter mode encryption
m some sponge-like
m OTR: block encryption without block cipher inverse!

m Often complex treatment of last block

m to avoid message expansion due to encryption
m to reduce the number of block cipher calls for certain message
lengths

32/39

CAESAR submission Minalpher [Sasaki, Todo, Aoki, Naito, Sugawara,

Murakami, Matsui and Hirose]

B Permutation-based mode

m Aims for lightweight

m Primitive: dedicated 256-bit permutation
m security strength: 128 bits
m due to birthday bound

m Mode

m Very parallelizable

m Permutation used in tweakable Even-Mansour construction
m One permutation call per 256-bit AD block

m Two permutation calls per 256-bit P block

33/39

Minalpher Illustrated

m M[m]

BT

Clm]

[

77’1

w1 U1 L
i 4

tag

Courtesy Sasaki, Todo, Aoki, Naito, Sugawara, Murakami, Matsui and Hirose

34/39

The CAESAR competition

CAESAR submission Deoxys ijean, Nikolic and peyrin]

m 2 different modes calling a tweakable block cipher
m Tweakable block cipher Deoxys-BC
m AES Round function
m Key schedule replaced by key-and-tweak schedule
m Tweakey method [Jean, Nikolic and Peyrin 2014]
m OCB3 [Rogaway and Krovetz, 2011]
m fully parallelizable
m one block cipher call per AD or P block
m COPA [Andreeva, Bogdanov, Luykx, Mennink and Yasuda, 2013]

m very parallelizable
m two block cipher calls per P block
m better behaviour under nonce violation

35/39

The CAESAR competition

Tweakey

Tweakey Schedule (p = 2)
o e g p - — -
L e TR I A - I : 0
h h h—)

:
[X0R_J— Ry [xor_J-— RCy X0R_|«— RCy [XOR |« RCyr [XoR_] RC

o

Courtesy Jean, Nikolic and Peyrin

m Idea: integrate tweak in key schedule
m allows having 128-bit generic security with AES

m Applied to AES

h: byte transposition

2: multiplication by x in GF(28)

KT: key (top thread) and tweak (bottom thread)
proven bounds in chosen-tweak scenario

36/39

OCB3 illustrated

[4] 4] | A | [Ax07]
¥] i
E?:;\’. 1 E}ZZN'Q E?:J\f.l,, E?:N‘/u
&< £ < &
| } |
0 —P— @
[v | | M | [M | [arao
Y
E}]{,N.l E?(\u bbbbb E}J{:N,z Ef{’N'l
pad ¥
¥
] [[[@

Courtesy Jean, Nikolic and Peyrin

=]

E?{:N.l
final
&[]
tag

37/39

The CAESAR competition

COPA illustrated

LA |
T

A A, 10* M M, M, 10*
| I e [

2,N.1
EK

2,N 14|
E[x'

]

0 —Pp— -

|

L2]
7

E?.A\',l e EO,Q’\'.I El,A\'.l E:;.;\".[
i K K e
|] | !
—&—9 e - —&— &
E?([)'\;f\'.[u Ei\l ce E;‘\ J! E;’)\:A‘V‘[EIT\;J\V.Z
] ¥ ¥ ¥ ¥ final
R e o

Courtesy Jean, Nikolic and Peyrin

38/39

Conclusions

Conclusions

m CAESAR submissions cover a wide range of AE schemes

m parallel vs compact

high throughput vs lightweight

software vs hardware oriented

side-channel aware or not

different levels of robustness against improper usage
go see for yourself!

m Interesting ongoing discussions
® In any case:

m don’t repeat nonces
m don’t release unverified plaintext

Thanks for your attention!

39/39

	What is authenticated encryption?
	An ideal AE scheme
	Two practical AE schemes
	Implementation considerations
	The CAESAR competition

