
On authenticated encryption and the CAESAR
competition

Joan Daemen

STMicroelectronics and Radboud University

Crypto summer school 2015
Šibenik, Croatia, May 31 - June 5, 2015

1 / 39

What is authenticated encryption?

Outline

1 What is authenticated encryption?

2 An ideal AE scheme

3 Two practical AE schemes

4 Implementation considerations

5 The CAESAR competition

2 / 39

What is authenticated encryption?

What is authenticated encryption (AE)?

Messages and cryptograms
M = (AD, P) message with associated data and plaintext
Mc = (AD,C) cryptogram with associated data and ciphertext

All of M is authenticated but only P is encrypted
wrapping: M to Mc
unwrapping: Mc to M

Symmetric cryptography: same key used for both operations
Authentication aspect

unwrapping includes verification of Mc
if not valid, it returns an error ⊥
wrap operation adds redundancy: |C| > |P|
often redundancy coded at the end of C: tag T

Note: this is usually called AEAD

3 / 39

What is authenticated encryption?

Limitation of AE: traffic analysis

Traffic analysis:
length of messages
number of messages

Solution
creating dummy messages
random-length padding of plaintext
to be done on higher layer

AE scheme security should be independent from this layer

4 / 39

What is authenticated encryption?

Limitation of AE: need for message uniqueness

Concrete AE proposals are deterministic
Equal messages lead to equal cryptograms

information leakage
concern of replay attacks at unwrapping end

Solution is using nonces (Number used only ONCE)
impose that the AD is a nonce for the given key K
often presented as a separate field N
wrapping engine shall ensure (K,N) is unique

wrapping becomes stateful
a simple message counter suffices

From now on we always include a nonce N

5 / 39

What is authenticated encryption?

Functional behaviour

Wrapping:
state: K and past nonces N
input: M = (N, AD, P)
output: C or ⊥
processing:

if (N ∈ N) return ⊥
else add N to N and return C← Wrap[K](N, AD, P)

Unwrapping:
state: K
input: Mc = (N, AD,C)
output: P or ⊥
processing:

return Unwrap[K](N, AD,C): P if valid and ⊥ otherwise

6 / 39

What is authenticated encryption?

Sessions

Session: cryptogram authenticates also previous messages
full sequence of messages since the session started

Additional protection against:
insertion,
omission,
re-ordering of messages within a session

Attention point: last message of session
Alternative view:

splits a long cryptogram in shorter ones
intermediate tags

See [Bellare, Kohno and Namprempre, ACM 2003], [KT, SAC 2011], [Boldyreva,
Degabriele, Paterson, Stam, EC 2012] and [Hoang, Reyhanitabar, Rogaway and Vizár,

2015]

7 / 39

What is authenticated encryption?

Functional behaviour, with sessions

Initialization of stateful session object D
state: past nonces N (may be omitted for unwrapping)
input: key K, nonce N
processing:

if (N ∈ N) return ⊥
else add N to N and create D with D.S← Init(K,N)

D.S will be updated during the session

Wrapping
return C(i) ← D.Wrap(AD(i), P(i))
this updates D.S

Unwrapping
return D.Unwrap(AD(i),C(i)): P(i) or ⊥
in case of no error, this updates D.S
session may be aborted after specific number of errors

8 / 39

An ideal AE scheme

Outline

1 What is authenticated encryption?

2 An ideal AE scheme

3 Two practical AE schemes

4 Implementation considerations

5 The CAESAR competition

9 / 39

An ideal AE scheme

An ideal AE scheme

Separate fixed-length tag, so Mc = (N, AD,C, T)
Functional components: random oracle RO

variable output length, implied by the context
ROe(·) = RO(·||1) for encryption
ROa(·) = RO(·||0) for tag computation

Wrapping
if (N ∈ N) it return ⊥
C← ROe(K||N||AD)⊕ P
T← ROa(K||N||AD||P)

Unwrapping
P← ROe(K||N||AD)⊕ C
T′ ← ROa(K||N||AD||P)
If (T′ ̸= T) return ⊥, else return P

Note: RO input shall be uniquely decodable in K, N AD and P

10 / 39

An ideal AE scheme

Ideal AE scheme, now supporting sessions

Initialization
if (N ∈ N) it return ⊥
D.S← K||N

Wrapping of M(i) = (AD(i), P(i))

D.S← D.S||AD(i)||1 and then C(i) ← RO(D.S)⊕ P(i)

D.S← D.S||P(i)||0 and then T(i) ← RO(D.S)
return (C(i), T(i))

Unwrapping of M(i)
c = (AD(i),C(i), T(i))

save current state in case of error: S′ ← D.S
D.S← D.S||AD(i)||1 and then P(i) ← RO(D.S)⊕ C(i)

D.S← D.S||P(i)||0 and then τ ← RO(D.S)
if (τ = T(i)) return P(i),
else D.S← S′ and then return ⊥

Note: RO input shall be uniquely decodable in K, N AD(i) and P(i)

11 / 39

An ideal AE scheme

Security of our ideal AE scheme

Attack model: adversary can adaptively query:
Init, respecting nonce uniqueness (not counted),
D.Wrap (qw times) and D.Unwrap (qu times)
RO(x): n times

Input to RO(K||·) never repeats: outputs are uniformly random
intra-session: each input to RO is longer than previous one
inter-session: first part of RO input (N,K) never repeated
So cryptograms C(i) and tags T(i) are uniformly random

12 / 39

An ideal AE scheme

Security of our ideal AE scheme (cont’d)

Forgery:

building sequence of valid cryptograms M(1)
c . . .M(ℓ)

c

not obtained from calls to wrap for some M(1) . . .M(ℓ)

Privacy break:

learning on plaintext bits of M(ℓ)
c

without unwrapping all of M(1)
c . . .M(ℓ)

c

Complete security breakdown: key recovery
single target key: getting one specific key
multiple target: getting one key out of m target keys

13 / 39

An ideal AE scheme

Security of our ideal AE scheme (cont’d 2)

Forgery
best strategy: send random but well-formatted cryptograms
success probability for qu attempts: qu2−|T|

Privacy break
best strategy at unwrap: send cryptograms with modified Ci or Ti
success probability for qu attempts: qu2−|T|

Key retrieval
best strategy: exhaustive key search
single target: success probability for n key guesses ≈ n2−|K|

multi-target: success probability for n key guesses ≤ (m+ 1)n2−|K|

Countermeasure against multi-target security erosion: global nonce

Summary:
1 out of m keys recovery after 2|K|−log2(m+1) offline calls to RO(·)
single privacy break/forgery after 2|T| online calls to D.Unwrap

14 / 39

Two practical AE schemes

Outline

1 What is authenticated encryption?

2 An ideal AE scheme

3 Two practical AE schemes

4 Implementation considerations

5 The CAESAR competition

15 / 39

Two practical AE schemes

Instantiating our ideal AE scheme

Replace RO by a sponge function like Keccak
Thanks to RO-differentiating bound of sponge [KT, EC 2008]:

key recovery: min(2|K|−log2 m, 2c/2) offline calls to Keccak-f
privacy break/forgery: min(2|T|, 2c/2) online calls to Keccak-f
. . . assuming Keccak-f has no exploitable properties
tighter bounds in [Andreeva, Daemen, Mennink, Van Assche, FSE 2015]

Practical scheme?
D.S buffers all previous messages
Input to our sponge includes all messages

Practical scheme!
sponge operates sequentially on a b-bit state S
update this state S on the fly
instantiations: our designs Keyak and Ketje

16 / 39

Two practical AE schemes

Instantiating our ideal AE scheme

Replace RO by a sponge function like Keccak
Thanks to RO-differentiating bound of sponge [KT, EC 2008]:

key recovery: min(2|K|−log2 m, 2c/2) offline calls to Keccak-f
privacy break/forgery: min(2|T|, 2c/2) online calls to Keccak-f
. . . assuming Keccak-f has no exploitable properties
tighter bounds in [Andreeva, Daemen, Mennink, Van Assche, FSE 2015]

Practical scheme?
D.S buffers all previous messages
Input to our sponge includes all messages

Practical scheme!
sponge operates sequentially on a b-bit state S
update this state S on the fly
instantiations: our designs Keyak and Ketje

16 / 39

Two practical AE schemes

Keyak [Keccak team + Ronny Van Keer]

Four instances, all with 128 bits of security strength
Architecture in multiple layers

permutation: reduced-round Keccak-f[1600] or Keccak-f[800]
duplex construction: alternating input with output
DuplexWrap mode: unique decodability and domain separation
(optional) KeyakLines mode: for parallelizable instances

Generic security thanks to a combination of results:
keyed sponge distinguishing bounds [Andreeva, Daemen, Mennink, Van
Assche, FSE 2015]
security equivalence of sponge and duplex [KT, SAC 2011]
SpongeWrap generic security [KT, SAC 2011], adapted to DuplexWrap
sound tree hashing modes [KT, IJIS 2013] for parallelized modes

17 / 39

Two practical AE schemes

DuplexWrap layer

DuplexWrap
nonce-based authenticated encryption mode
works on sequences of header-body pairs

0 A(1)
1 B(1)

C(1) T(1)

A(1) contains the key and must be unique, e.g.,
A(1) contains a session key used only once
A(1) contains a key and a nonce
in general: A(1) = K||N||AD(1)

B(i) = P(i) and for i > 1 : A(i) = AD(i)

18 / 39

Two practical AE schemes

DuplexWrap layer

DuplexWrap
nonce-based authenticated encryption mode
works on sequences of header-body pairs

0 A(1)
1 B(1)

C(1) T(1)

A(1) contains the key and must be unique, e.g.,
A(1) contains a session key used only once
A(1) contains a key and a nonce
in general: A(1) = K||N||AD(1)

B(i) = P(i) and for i > 1 : A(i) = AD(i)

18 / 39

Two practical AE schemes

DuplexWrap layer

DuplexWrap
nonce-based authenticated encryption mode
works on sequences of header-body pairs

0 A(1)
1 B(1)

C(1) T(1)

A(2) B(2)

C(2) T(2)

A(1) contains the key and must be unique, e.g.,
A(1) contains a session key used only once
A(1) contains a key and a nonce
in general: A(1) = K||N||AD(1)

B(i) = P(i) and for i > 1 : A(i) = AD(i)

18 / 39

Two practical AE schemes

DuplexWrap layer

DuplexWrap
nonce-based authenticated encryption mode
works on sequences of header-body pairs

0 A(1)
1 B(1)

C(1) T(1)

A(2) B(2)

C(2) T(2)

A(3)

T(3)

A(1) contains the key and must be unique, e.g.,
A(1) contains a session key used only once
A(1) contains a key and a nonce
in general: A(1) = K||N||AD(1)

B(i) = P(i) and for i > 1 : A(i) = AD(i)

18 / 39

Two practical AE schemes

Inside DuplexWrap

0 d d d d

+00 +00 +10 0

19 / 39

Two practical AE schemes

Inside DuplexWrap

0 d d d d d d

+00 +00 +01 +11 +10 0

19 / 39

Two practical AE schemes

Duplex layer

f = Keccak-p[1600, nr = 12] or f = Keccak-p[800, nr = 12]

σi: a block of header, a block of body or an empty block

Zi: a block of keystream, a block of tag or nothing

blocks are up to ρ = b− c− 4 bits long

20 / 39

Two practical AE schemes

Keyak instances

Name Width b Parallelism P

River Keyak 800 1
Lake Keyak 1600 1
Sea Keyak 1600 2
Ocean Keyak 1600 4

252-bit capacity: 128-bit security if data < 2123 blocks [FSE 2015]

River Keyak: block length up to 68 bytes
other : block length up to 168 bytes

Processing for Lake Keyak
long messages: about 50 % of SHAKE128
short messages: 24 rounds

Working memory footprint
reasonable on high- and middle-end platforms
not ideal on constrained platforms

21 / 39

Two practical AE schemes

Ketje [Keccak team + Ronny Van Keer]

Two instances

Functionally similar to Keyak
Lightweight:

using reduced-round Keccak-f[400] or Keccak-f[200]
small footprint
low computation for short messages

How?
96-bit or 128-bit security (incl. multi-target)
more ad-hoc: monkeyDuplex instead of duplex
reliance on nonce uniqueness for key protection

22 / 39

Two practical AE schemes

Ketje instances and lightweight features

feature Ketje Jr Ketje Sr

state size 25 bytes 50 bytes
block size 2 bytes 4 bytes

processing computational cost
initialization per session 12 rounds 12 rounds
wrapping per block 1 round 1 round
8-byte tag comp. per message 9 rounds 7 rounds

23 / 39

Implementation considerations

Outline

1 What is authenticated encryption?

2 An ideal AE scheme

3 Two practical AE schemes

4 Implementation considerations

5 The CAESAR competition

24 / 39

Implementation considerations

Wish for being online

Online: being able to wrap or unwrap a message on-the-fly

Avoid having to buffer long messages
Online unwrapping implies returning unverified plaintext

in most models unwrap never returns unverified plaintext
two ways to tackle this problem

Tolerating Release of Unverified Plaintext (RUP)
generates additional security notions and attacks [Andreeva,
Bogdanov, Luykx, Mennink, Mouha, and Yasuda, ASIACRYPT 2014]
try to satisfy (some of) these: costly
catastrophic fragmentation attack [Albrecht, Paterson, Watson, IEEE
S&P 2009]

Session approach:
split long cryptogram into short ones, each with tag
cryptograms short enough to fit the unwrap buffer

25 / 39

Implementation considerations

Wish for surviving sloppy nonce management

Our assumption: K,N is unique per call to Init for wrapping
users/implementers do not always respect this
wish to limit consequences of nonce violation

All online AE schemes leak in case of nonce violation
equality of first messages of session leaks in any case
if stream encryption: re-use of keystream
if block encryption: just equality of block(s) leaks
low entropy plaintexts become an issue
successful active attacks for quasi all proposed schemes

I think there is consensus among experts on the following:
hard to give an understandable security definition
user shall be warned to not allow nonce violation
calling an AE scheme nonce-misuse resistant gives wrong message

Question: may nonce violation lead to full security breakdown?

26 / 39

Implementation considerations

Wish for parallelism

AES is the official NIST and de facto world standard block cipher
Modern CPUs have dedicated AES instruction, e.g. AES-NI on Intel

pipelining: 1 cycle per round but latency of 8 to 16 cycles
performing a single AES: 80 cycles
performing 8 independent AES: 88 cycles

Filling the pipeline requires parallelism
Also non-AES based schemes can benefit from parallelism

exploiting SIMD instructions
exploiting multi-core

27 / 39

The CAESAR competition

Outline

1 What is authenticated encryption?

2 An ideal AE scheme

3 Two practical AE schemes

4 Implementation considerations

5 The CAESAR competition

28 / 39

The CAESAR competition

The CAESAR competition

Public competition for authenticated ciphers
consortium from academia and industry
aims for portfolio instead of single winner
CAESAR committee (secretary Dan Bernstein)

Timeline
submission deadline: March 15, 2014
57 submissions

many block cipher modes
about a dozen sponge-based,
including our submissions: Ketje and Keyak

3 rounds foreseen
goal of round 1: reduction to 25 or so candidates
we are experiencing some delay . . .

target end date: December 2017

http://competitions.cr.yp.to/caesar-submissions.html

29 / 39

http://competitions.cr.yp.to/caesar-submissions.html

The CAESAR competition

CAESAR candidate statistics (approximate numbers)

Usage of primitives
12 permutations, 10 new
7 block ciphers, 1 new
6 tweakable block ciphers, all new
about 20 submissions use AES

Modes
16 block encryption modes, 12 new
30 stream encryption modes, 25 new
popular modes:

sponge-like
Even-Mansour
OCB
COPA

9 out of 57 submissions already withdrawn and 1 more broken

30 / 39

The CAESAR competition

Permutation-based modes

Mostly in two categories: sponge and Even-Mansour
Sponge: b = r+ c

one (or more) serial data paths
stream encryption
no permutation inverse needed (except in APE of PRIMATEs)
sub-type: non-hermetic approach

full security breakdown under nonce violation
AES-round (AEGIS, Tiaoxin) and Keccak-f round (Ketje)

Even-Mansour: b = r
permutation to build (tweakable) block cipher
parallelizable modes as OCB, COPA, PMAC, CTR, OTR
need for permutation inverse (except OTR)

31 / 39

The CAESAR competition

Blockcipher-based modes

Those that require inverse
aiming at nonce-misuse resistance and parallelism

Those that don’t
mostly counter mode encryption
some sponge-like
OTR: block encryption without block cipher inverse!

Often complex treatment of last block
to avoid message expansion due to encryption
to reduce the number of block cipher calls for certain message
lengths

32 / 39

The CAESAR competition

CAESAR submission Minalpher [Sasaki, Todo, Aoki, Naito, Sugawara,

Murakami, Matsui and Hirose]

Permutation-based mode

Aims for lightweight
Primitive: dedicated 256-bit permutation

security strength: 128 bits
due to birthday bound

Mode
Very parallelizable
Permutation used in tweakable Even-Mansour construction
One permutation call per 256-bit AD block
Two permutation calls per 256-bit P block

33 / 39

The CAESAR competition

Minalpher Illustrated

Courtesy Sasaki, Todo, Aoki, Naito, Sugawara, Murakami, Matsui and Hirose

34 / 39

The CAESAR competition

CAESAR submission Deoxys [Jean, Nikolic and Peyrin]

2 different modes calling a tweakable block cipher
Tweakable block cipher Deoxys-BC

AES Round function
Key schedule replaced by key-and-tweak schedule
Tweakey method [Jean, Nikolic and Peyrin 2014]

ΘCB3 [Rogaway and Krovetz, 2011]

fully parallelizable
one block cipher call per AD or P block

COPA [Andreeva, Bogdanov, Luykx, Mennink and Yasuda, 2013]

very parallelizable
two block cipher calls per P block
better behaviour under nonce violation

35 / 39

The CAESAR competition

Tweakey

Courtesy Jean, Nikolic and Peyrin

Idea: integrate tweak in key schedule
allows having 128-bit generic security with AES

Applied to AES
h: byte transposition
2: multiplication by x in GF(28)
KT: key (top thread) and tweak (bottom thread)
proven bounds in chosen-tweak scenario

36 / 39

The CAESAR competition

ΘCB3 illustrated

Courtesy Jean, Nikolic and Peyrin
37 / 39

The CAESAR competition

COPA illustrated

Courtesy Jean, Nikolic and Peyrin

38 / 39

Conclusions

Conclusions

CAESAR submissions cover a wide range of AE schemes
parallel vs compact
high throughput vs lightweight
software vs hardware oriented
side-channel aware or not
different levels of robustness against improper usage
go see for yourself!

Interesting ongoing discussions
In any case:

don’t repeat nonces
don’t release unverified plaintext

Thanks for your attention!

39 / 39

	What is authenticated encryption?
	An ideal AE scheme
	Two practical AE schemes
	Implementation considerations
	The CAESAR competition

